1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
|
*> \brief \b SLANTP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular matrix supplied in packed form.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLANTP + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slantp.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slantp.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slantp.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* REAL FUNCTION SLANTP( NORM, UPLO, DIAG, N, AP, WORK )
*
* .. Scalar Arguments ..
* CHARACTER DIAG, NORM, UPLO
* INTEGER N
* ..
* .. Array Arguments ..
* REAL AP( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SLANTP returns the value of the one norm, or the Frobenius norm, or
*> the infinity norm, or the element of largest absolute value of a
*> triangular matrix A, supplied in packed form.
*> \endverbatim
*>
*> \return SLANTP
*> \verbatim
*>
*> SLANTP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
*> (
*> ( norm1(A), NORM = '1', 'O' or 'o'
*> (
*> ( normI(A), NORM = 'I' or 'i'
*> (
*> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
*>
*> where norm1 denotes the one norm of a matrix (maximum column sum),
*> normI denotes the infinity norm of a matrix (maximum row sum) and
*> normF denotes the Frobenius norm of a matrix (square root of sum of
*> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] NORM
*> \verbatim
*> NORM is CHARACTER*1
*> Specifies the value to be returned in SLANTP as described
*> above.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the matrix A is upper or lower triangular.
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] DIAG
*> \verbatim
*> DIAG is CHARACTER*1
*> Specifies whether or not the matrix A is unit triangular.
*> = 'N': Non-unit triangular
*> = 'U': Unit triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0. When N = 0, SLANTP is
*> set to zero.
*> \endverbatim
*>
*> \param[in] AP
*> \verbatim
*> AP is REAL array, dimension (N*(N+1)/2)
*> The upper or lower triangular matrix A, packed columnwise in
*> a linear array. The j-th column of A is stored in the array
*> AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*> Note that when DIAG = 'U', the elements of the array AP
*> corresponding to the diagonal elements of the matrix A are
*> not referenced, but are assumed to be one.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (MAX(1,LWORK)),
*> where LWORK >= N when NORM = 'I'; otherwise, WORK is not
*> referenced.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup realOTHERauxiliary
*
* =====================================================================
REAL FUNCTION SLANTP( NORM, UPLO, DIAG, N, AP, WORK )
*
* -- LAPACK auxiliary routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER DIAG, NORM, UPLO
INTEGER N
* ..
* .. Array Arguments ..
REAL AP( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL UDIAG
INTEGER I, J, K
REAL SCALE, SUM, VALUE
* ..
* .. External Subroutines ..
EXTERNAL SLASSQ
* ..
* .. External Functions ..
LOGICAL LSAME, SISNAN
EXTERNAL LSAME, SISNAN
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, SQRT
* ..
* .. Executable Statements ..
*
IF( N.EQ.0 ) THEN
VALUE = ZERO
ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
* Find max(abs(A(i,j))).
*
K = 1
IF( LSAME( DIAG, 'U' ) ) THEN
VALUE = ONE
IF( LSAME( UPLO, 'U' ) ) THEN
DO 20 J = 1, N
DO 10 I = K, K + J - 2
SUM = ABS( AP( I ) )
IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
10 CONTINUE
K = K + J
20 CONTINUE
ELSE
DO 40 J = 1, N
DO 30 I = K + 1, K + N - J
SUM = ABS( AP( I ) )
IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
30 CONTINUE
K = K + N - J + 1
40 CONTINUE
END IF
ELSE
VALUE = ZERO
IF( LSAME( UPLO, 'U' ) ) THEN
DO 60 J = 1, N
DO 50 I = K, K + J - 1
SUM = ABS( AP( I ) )
IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
50 CONTINUE
K = K + J
60 CONTINUE
ELSE
DO 80 J = 1, N
DO 70 I = K, K + N - J
SUM = ABS( AP( I ) )
IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
70 CONTINUE
K = K + N - J + 1
80 CONTINUE
END IF
END IF
ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
*
* Find norm1(A).
*
VALUE = ZERO
K = 1
UDIAG = LSAME( DIAG, 'U' )
IF( LSAME( UPLO, 'U' ) ) THEN
DO 110 J = 1, N
IF( UDIAG ) THEN
SUM = ONE
DO 90 I = K, K + J - 2
SUM = SUM + ABS( AP( I ) )
90 CONTINUE
ELSE
SUM = ZERO
DO 100 I = K, K + J - 1
SUM = SUM + ABS( AP( I ) )
100 CONTINUE
END IF
K = K + J
IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
110 CONTINUE
ELSE
DO 140 J = 1, N
IF( UDIAG ) THEN
SUM = ONE
DO 120 I = K + 1, K + N - J
SUM = SUM + ABS( AP( I ) )
120 CONTINUE
ELSE
SUM = ZERO
DO 130 I = K, K + N - J
SUM = SUM + ABS( AP( I ) )
130 CONTINUE
END IF
K = K + N - J + 1
IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
140 CONTINUE
END IF
ELSE IF( LSAME( NORM, 'I' ) ) THEN
*
* Find normI(A).
*
K = 1
IF( LSAME( UPLO, 'U' ) ) THEN
IF( LSAME( DIAG, 'U' ) ) THEN
DO 150 I = 1, N
WORK( I ) = ONE
150 CONTINUE
DO 170 J = 1, N
DO 160 I = 1, J - 1
WORK( I ) = WORK( I ) + ABS( AP( K ) )
K = K + 1
160 CONTINUE
K = K + 1
170 CONTINUE
ELSE
DO 180 I = 1, N
WORK( I ) = ZERO
180 CONTINUE
DO 200 J = 1, N
DO 190 I = 1, J
WORK( I ) = WORK( I ) + ABS( AP( K ) )
K = K + 1
190 CONTINUE
200 CONTINUE
END IF
ELSE
IF( LSAME( DIAG, 'U' ) ) THEN
DO 210 I = 1, N
WORK( I ) = ONE
210 CONTINUE
DO 230 J = 1, N
K = K + 1
DO 220 I = J + 1, N
WORK( I ) = WORK( I ) + ABS( AP( K ) )
K = K + 1
220 CONTINUE
230 CONTINUE
ELSE
DO 240 I = 1, N
WORK( I ) = ZERO
240 CONTINUE
DO 260 J = 1, N
DO 250 I = J, N
WORK( I ) = WORK( I ) + ABS( AP( K ) )
K = K + 1
250 CONTINUE
260 CONTINUE
END IF
END IF
VALUE = ZERO
DO 270 I = 1, N
SUM = WORK( I )
IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
270 CONTINUE
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
* Find normF(A).
*
IF( LSAME( UPLO, 'U' ) ) THEN
IF( LSAME( DIAG, 'U' ) ) THEN
SCALE = ONE
SUM = N
K = 2
DO 280 J = 2, N
CALL SLASSQ( J-1, AP( K ), 1, SCALE, SUM )
K = K + J
280 CONTINUE
ELSE
SCALE = ZERO
SUM = ONE
K = 1
DO 290 J = 1, N
CALL SLASSQ( J, AP( K ), 1, SCALE, SUM )
K = K + J
290 CONTINUE
END IF
ELSE
IF( LSAME( DIAG, 'U' ) ) THEN
SCALE = ONE
SUM = N
K = 2
DO 300 J = 1, N - 1
CALL SLASSQ( N-J, AP( K ), 1, SCALE, SUM )
K = K + N - J + 1
300 CONTINUE
ELSE
SCALE = ZERO
SUM = ONE
K = 1
DO 310 J = 1, N
CALL SLASSQ( N-J+1, AP( K ), 1, SCALE, SUM )
K = K + N - J + 1
310 CONTINUE
END IF
END IF
VALUE = SCALE*SQRT( SUM )
END IF
*
SLANTP = VALUE
RETURN
*
* End of SLANTP
*
END
|