summaryrefslogtreecommitdiff
path: root/SRC/slangt.f
blob: dc56c605218bbab61ab8c3e36368cf91237c5586 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
      REAL             FUNCTION SLANGT( NORM, N, DL, D, DU )
*
*  -- LAPACK auxiliary routine (version 3.2) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          NORM
      INTEGER            N
*     ..
*     .. Array Arguments ..
      REAL               D( * ), DL( * ), DU( * )
*     ..
*
*  Purpose
*  =======
*
*  SLANGT  returns the value of the one norm,  or the Frobenius norm, or
*  the  infinity norm,  or the  element of  largest absolute value  of a
*  real tridiagonal matrix A.
*
*  Description
*  ===========
*
*  SLANGT returns the value
*
*     SLANGT = ( max(abs(A(i,j))), NORM = 'M' or 'm'
*              (
*              ( norm1(A),         NORM = '1', 'O' or 'o'
*              (
*              ( normI(A),         NORM = 'I' or 'i'
*              (
*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
*
*  where  norm1  denotes the  one norm of a matrix (maximum column sum),
*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
*  normF  denotes the  Frobenius norm of a matrix (square root of sum of
*  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
*
*  Arguments
*  =========
*
*  NORM    (input) CHARACTER*1
*          Specifies the value to be returned in SLANGT as described
*          above.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.  When N = 0, SLANGT is
*          set to zero.
*
*  DL      (input) REAL array, dimension (N-1)
*          The (n-1) sub-diagonal elements of A.
*
*  D       (input) REAL array, dimension (N)
*          The diagonal elements of A.
*
*  DU      (input) REAL array, dimension (N-1)
*          The (n-1) super-diagonal elements of A.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I
      REAL               ANORM, SCALE, SUM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLASSQ
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, SQRT
*     ..
*     .. Executable Statements ..
*
      IF( N.LE.0 ) THEN
         ANORM = ZERO
      ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
*        Find max(abs(A(i,j))).
*
         ANORM = ABS( D( N ) )
         DO 10 I = 1, N - 1
            ANORM = MAX( ANORM, ABS( DL( I ) ) )
            ANORM = MAX( ANORM, ABS( D( I ) ) )
            ANORM = MAX( ANORM, ABS( DU( I ) ) )
   10    CONTINUE
      ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' ) THEN
*
*        Find norm1(A).
*
         IF( N.EQ.1 ) THEN
            ANORM = ABS( D( 1 ) )
         ELSE
            ANORM = MAX( ABS( D( 1 ) )+ABS( DL( 1 ) ),
     $              ABS( D( N ) )+ABS( DU( N-1 ) ) )
            DO 20 I = 2, N - 1
               ANORM = MAX( ANORM, ABS( D( I ) )+ABS( DL( I ) )+
     $                 ABS( DU( I-1 ) ) )
   20       CONTINUE
         END IF
      ELSE IF( LSAME( NORM, 'I' ) ) THEN
*
*        Find normI(A).
*
         IF( N.EQ.1 ) THEN
            ANORM = ABS( D( 1 ) )
         ELSE
            ANORM = MAX( ABS( D( 1 ) )+ABS( DU( 1 ) ),
     $              ABS( D( N ) )+ABS( DL( N-1 ) ) )
            DO 30 I = 2, N - 1
               ANORM = MAX( ANORM, ABS( D( I ) )+ABS( DU( I ) )+
     $                 ABS( DL( I-1 ) ) )
   30       CONTINUE
         END IF
      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
*        Find normF(A).
*
         SCALE = ZERO
         SUM = ONE
         CALL SLASSQ( N, D, 1, SCALE, SUM )
         IF( N.GT.1 ) THEN
            CALL SLASSQ( N-1, DL, 1, SCALE, SUM )
            CALL SLASSQ( N-1, DU, 1, SCALE, SUM )
         END IF
         ANORM = SCALE*SQRT( SUM )
      END IF
*
      SLANGT = ANORM
      RETURN
*
*     End of SLANGT
*
      END