summaryrefslogtreecommitdiff
path: root/SRC/slagv2.f
blob: 638c7dfbc266ab66256ae1000c74d14032d892b6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
*> \brief \b SLAGV2 computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLAGV2 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slagv2.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slagv2.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slagv2.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE SLAGV2( A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, CSL, SNL,
*                          CSR, SNR )
*
*       .. Scalar Arguments ..
*       INTEGER            LDA, LDB
*       REAL               CSL, CSR, SNL, SNR
*       ..
*       .. Array Arguments ..
*       REAL               A( LDA, * ), ALPHAI( 2 ), ALPHAR( 2 ),
*      $                   B( LDB, * ), BETA( 2 )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SLAGV2 computes the Generalized Schur factorization of a real 2-by-2
*> matrix pencil (A,B) where B is upper triangular. This routine
*> computes orthogonal (rotation) matrices given by CSL, SNL and CSR,
*> SNR such that
*>
*> 1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0
*>    types), then
*>
*>    [ a11 a12 ] := [  CSL  SNL ] [ a11 a12 ] [  CSR -SNR ]
*>    [  0  a22 ]    [ -SNL  CSL ] [ a21 a22 ] [  SNR  CSR ]
*>
*>    [ b11 b12 ] := [  CSL  SNL ] [ b11 b12 ] [  CSR -SNR ]
*>    [  0  b22 ]    [ -SNL  CSL ] [  0  b22 ] [  SNR  CSR ],
*>
*> 2) if the pencil (A,B) has a pair of complex conjugate eigenvalues,
*>    then
*>
*>    [ a11 a12 ] := [  CSL  SNL ] [ a11 a12 ] [  CSR -SNR ]
*>    [ a21 a22 ]    [ -SNL  CSL ] [ a21 a22 ] [  SNR  CSR ]
*>
*>    [ b11  0  ] := [  CSL  SNL ] [ b11 b12 ] [  CSR -SNR ]
*>    [  0  b22 ]    [ -SNL  CSL ] [  0  b22 ] [  SNR  CSR ]
*>
*>    where b11 >= b22 > 0.
*>
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in,out] A
*> \verbatim
*>          A is REAL array, dimension (LDA, 2)
*>          On entry, the 2 x 2 matrix A.
*>          On exit, A is overwritten by the ``A-part'' of the
*>          generalized Schur form.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          THe leading dimension of the array A.  LDA >= 2.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is REAL array, dimension (LDB, 2)
*>          On entry, the upper triangular 2 x 2 matrix B.
*>          On exit, B is overwritten by the ``B-part'' of the
*>          generalized Schur form.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          THe leading dimension of the array B.  LDB >= 2.
*> \endverbatim
*>
*> \param[out] ALPHAR
*> \verbatim
*>          ALPHAR is REAL array, dimension (2)
*> \endverbatim
*>
*> \param[out] ALPHAI
*> \verbatim
*>          ALPHAI is REAL array, dimension (2)
*> \endverbatim
*>
*> \param[out] BETA
*> \verbatim
*>          BETA is REAL array, dimension (2)
*>          (ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the
*>          pencil (A,B), k=1,2, i = sqrt(-1).  Note that BETA(k) may
*>          be zero.
*> \endverbatim
*>
*> \param[out] CSL
*> \verbatim
*>          CSL is REAL
*>          The cosine of the left rotation matrix.
*> \endverbatim
*>
*> \param[out] SNL
*> \verbatim
*>          SNL is REAL
*>          The sine of the left rotation matrix.
*> \endverbatim
*>
*> \param[out] CSR
*> \verbatim
*>          CSR is REAL
*>          The cosine of the right rotation matrix.
*> \endverbatim
*>
*> \param[out] SNR
*> \verbatim
*>          SNR is REAL
*>          The sine of the right rotation matrix.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup realOTHERauxiliary
*
*> \par Contributors:
*  ==================
*>
*>     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
*
*  =====================================================================
      SUBROUTINE SLAGV2( A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, CSL, SNL,
     $                   CSR, SNR )
*
*  -- LAPACK auxiliary routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      INTEGER            LDA, LDB
      REAL               CSL, CSR, SNL, SNR
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), ALPHAI( 2 ), ALPHAR( 2 ),
     $                   B( LDB, * ), BETA( 2 )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      REAL               ANORM, ASCALE, BNORM, BSCALE, H1, H2, H3, QQ,
     $                   R, RR, SAFMIN, SCALE1, SCALE2, T, ULP, WI, WR1,
     $                   WR2
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLAG2, SLARTG, SLASV2, SROT
*     ..
*     .. External Functions ..
      REAL               SLAMCH, SLAPY2
      EXTERNAL           SLAMCH, SLAPY2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX
*     ..
*     .. Executable Statements ..
*
      SAFMIN = SLAMCH( 'S' )
      ULP = SLAMCH( 'P' )
*
*     Scale A
*
      ANORM = MAX( ABS( A( 1, 1 ) )+ABS( A( 2, 1 ) ),
     $        ABS( A( 1, 2 ) )+ABS( A( 2, 2 ) ), SAFMIN )
      ASCALE = ONE / ANORM
      A( 1, 1 ) = ASCALE*A( 1, 1 )
      A( 1, 2 ) = ASCALE*A( 1, 2 )
      A( 2, 1 ) = ASCALE*A( 2, 1 )
      A( 2, 2 ) = ASCALE*A( 2, 2 )
*
*     Scale B
*
      BNORM = MAX( ABS( B( 1, 1 ) ), ABS( B( 1, 2 ) )+ABS( B( 2, 2 ) ),
     $        SAFMIN )
      BSCALE = ONE / BNORM
      B( 1, 1 ) = BSCALE*B( 1, 1 )
      B( 1, 2 ) = BSCALE*B( 1, 2 )
      B( 2, 2 ) = BSCALE*B( 2, 2 )
*
*     Check if A can be deflated
*
      IF( ABS( A( 2, 1 ) ).LE.ULP ) THEN
         CSL = ONE
         SNL = ZERO
         CSR = ONE
         SNR = ZERO
         A( 2, 1 ) = ZERO
         B( 2, 1 ) = ZERO
         WI = ZERO
*
*     Check if B is singular
*
      ELSE IF( ABS( B( 1, 1 ) ).LE.ULP ) THEN
         CALL SLARTG( A( 1, 1 ), A( 2, 1 ), CSL, SNL, R )
         CSR = ONE
         SNR = ZERO
         CALL SROT( 2, A( 1, 1 ), LDA, A( 2, 1 ), LDA, CSL, SNL )
         CALL SROT( 2, B( 1, 1 ), LDB, B( 2, 1 ), LDB, CSL, SNL )
         A( 2, 1 ) = ZERO
         B( 1, 1 ) = ZERO
         B( 2, 1 ) = ZERO
         WI = ZERO
*
      ELSE IF( ABS( B( 2, 2 ) ).LE.ULP ) THEN
         CALL SLARTG( A( 2, 2 ), A( 2, 1 ), CSR, SNR, T )
         SNR = -SNR
         CALL SROT( 2, A( 1, 1 ), 1, A( 1, 2 ), 1, CSR, SNR )
         CALL SROT( 2, B( 1, 1 ), 1, B( 1, 2 ), 1, CSR, SNR )
         CSL = ONE
         SNL = ZERO
         A( 2, 1 ) = ZERO
         B( 2, 1 ) = ZERO
         B( 2, 2 ) = ZERO
         WI = ZERO
*
      ELSE
*
*        B is nonsingular, first compute the eigenvalues of (A,B)
*
         CALL SLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1, WR2,
     $               WI )
*
         IF( WI.EQ.ZERO ) THEN
*
*           two real eigenvalues, compute s*A-w*B
*
            H1 = SCALE1*A( 1, 1 ) - WR1*B( 1, 1 )
            H2 = SCALE1*A( 1, 2 ) - WR1*B( 1, 2 )
            H3 = SCALE1*A( 2, 2 ) - WR1*B( 2, 2 )
*
            RR = SLAPY2( H1, H2 )
            QQ = SLAPY2( SCALE1*A( 2, 1 ), H3 )
*
            IF( RR.GT.QQ ) THEN
*
*              find right rotation matrix to zero 1,1 element of
*              (sA - wB)
*
               CALL SLARTG( H2, H1, CSR, SNR, T )
*
            ELSE
*
*              find right rotation matrix to zero 2,1 element of
*              (sA - wB)
*
               CALL SLARTG( H3, SCALE1*A( 2, 1 ), CSR, SNR, T )
*
            END IF
*
            SNR = -SNR
            CALL SROT( 2, A( 1, 1 ), 1, A( 1, 2 ), 1, CSR, SNR )
            CALL SROT( 2, B( 1, 1 ), 1, B( 1, 2 ), 1, CSR, SNR )
*
*           compute inf norms of A and B
*
            H1 = MAX( ABS( A( 1, 1 ) )+ABS( A( 1, 2 ) ),
     $           ABS( A( 2, 1 ) )+ABS( A( 2, 2 ) ) )
            H2 = MAX( ABS( B( 1, 1 ) )+ABS( B( 1, 2 ) ),
     $           ABS( B( 2, 1 ) )+ABS( B( 2, 2 ) ) )
*
            IF( ( SCALE1*H1 ).GE.ABS( WR1 )*H2 ) THEN
*
*              find left rotation matrix Q to zero out B(2,1)
*
               CALL SLARTG( B( 1, 1 ), B( 2, 1 ), CSL, SNL, R )
*
            ELSE
*
*              find left rotation matrix Q to zero out A(2,1)
*
               CALL SLARTG( A( 1, 1 ), A( 2, 1 ), CSL, SNL, R )
*
            END IF
*
            CALL SROT( 2, A( 1, 1 ), LDA, A( 2, 1 ), LDA, CSL, SNL )
            CALL SROT( 2, B( 1, 1 ), LDB, B( 2, 1 ), LDB, CSL, SNL )
*
            A( 2, 1 ) = ZERO
            B( 2, 1 ) = ZERO
*
         ELSE
*
*           a pair of complex conjugate eigenvalues
*           first compute the SVD of the matrix B
*
            CALL SLASV2( B( 1, 1 ), B( 1, 2 ), B( 2, 2 ), R, T, SNR,
     $                   CSR, SNL, CSL )
*
*           Form (A,B) := Q(A,B)Z**T where Q is left rotation matrix and
*           Z is right rotation matrix computed from SLASV2
*
            CALL SROT( 2, A( 1, 1 ), LDA, A( 2, 1 ), LDA, CSL, SNL )
            CALL SROT( 2, B( 1, 1 ), LDB, B( 2, 1 ), LDB, CSL, SNL )
            CALL SROT( 2, A( 1, 1 ), 1, A( 1, 2 ), 1, CSR, SNR )
            CALL SROT( 2, B( 1, 1 ), 1, B( 1, 2 ), 1, CSR, SNR )
*
            B( 2, 1 ) = ZERO
            B( 1, 2 ) = ZERO
*
         END IF
*
      END IF
*
*     Unscaling
*
      A( 1, 1 ) = ANORM*A( 1, 1 )
      A( 2, 1 ) = ANORM*A( 2, 1 )
      A( 1, 2 ) = ANORM*A( 1, 2 )
      A( 2, 2 ) = ANORM*A( 2, 2 )
      B( 1, 1 ) = BNORM*B( 1, 1 )
      B( 2, 1 ) = BNORM*B( 2, 1 )
      B( 1, 2 ) = BNORM*B( 1, 2 )
      B( 2, 2 ) = BNORM*B( 2, 2 )
*
      IF( WI.EQ.ZERO ) THEN
         ALPHAR( 1 ) = A( 1, 1 )
         ALPHAR( 2 ) = A( 2, 2 )
         ALPHAI( 1 ) = ZERO
         ALPHAI( 2 ) = ZERO
         BETA( 1 ) = B( 1, 1 )
         BETA( 2 ) = B( 2, 2 )
      ELSE
         ALPHAR( 1 ) = ANORM*WR1 / SCALE1 / BNORM
         ALPHAI( 1 ) = ANORM*WI / SCALE1 / BNORM
         ALPHAR( 2 ) = ALPHAR( 1 )
         ALPHAI( 2 ) = -ALPHAI( 1 )
         BETA( 1 ) = ONE
         BETA( 2 ) = ONE
      END IF
*
      RETURN
*
*     End of SLAGV2
*
      END