summaryrefslogtreecommitdiff
path: root/SRC/slaeda.f
blob: 32041351be3bbedfceadba2fdce23044cb0be4ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
      SUBROUTINE SLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR,
     $                   GIVCOL, GIVNUM, Q, QPTR, Z, ZTEMP, INFO )
*
*  -- LAPACK routine (version 3.2.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     June 2010
*
*     .. Scalar Arguments ..
      INTEGER            CURLVL, CURPBM, INFO, N, TLVLS
*     ..
*     .. Array Arguments ..
      INTEGER            GIVCOL( 2, * ), GIVPTR( * ), PERM( * ),
     $                   PRMPTR( * ), QPTR( * )
      REAL               GIVNUM( 2, * ), Q( * ), Z( * ), ZTEMP( * )
*     ..
*
*  Purpose
*  =======
*
*  SLAEDA computes the Z vector corresponding to the merge step in the
*  CURLVLth step of the merge process with TLVLS steps for the CURPBMth
*  problem.
*
*  Arguments
*  =========
*
*  N      (input) INTEGER
*         The dimension of the symmetric tridiagonal matrix.  N >= 0.
*
*  TLVLS  (input) INTEGER
*         The total number of merging levels in the overall divide and
*         conquer tree.
*
*  CURLVL (input) INTEGER
*         The current level in the overall merge routine,
*         0 <= curlvl <= tlvls.
*
*  CURPBM (input) INTEGER
*         The current problem in the current level in the overall
*         merge routine (counting from upper left to lower right).
*
*  PRMPTR (input) INTEGER array, dimension (N lg N)
*         Contains a list of pointers which indicate where in PERM a
*         level's permutation is stored.  PRMPTR(i+1) - PRMPTR(i)
*         indicates the size of the permutation and incidentally the
*         size of the full, non-deflated problem.
*
*  PERM   (input) INTEGER array, dimension (N lg N)
*         Contains the permutations (from deflation and sorting) to be
*         applied to each eigenblock.
*
*  GIVPTR (input) INTEGER array, dimension (N lg N)
*         Contains a list of pointers which indicate where in GIVCOL a
*         level's Givens rotations are stored.  GIVPTR(i+1) - GIVPTR(i)
*         indicates the number of Givens rotations.
*
*  GIVCOL (input) INTEGER array, dimension (2, N lg N)
*         Each pair of numbers indicates a pair of columns to take place
*         in a Givens rotation.
*
*  GIVNUM (input) REAL array, dimension (2, N lg N)
*         Each number indicates the S value to be used in the
*         corresponding Givens rotation.
*
*  Q      (input) REAL array, dimension (N**2)
*         Contains the square eigenblocks from previous levels, the
*         starting positions for blocks are given by QPTR.
*
*  QPTR   (input) INTEGER array, dimension (N+2)
*         Contains a list of pointers which indicate where in Q an
*         eigenblock is stored.  SQRT( QPTR(i+1) - QPTR(i) ) indicates
*         the size of the block.
*
*  Z      (output) REAL array, dimension (N)
*         On output this vector contains the updating vector (the last
*         row of the first sub-eigenvector matrix and the first row of
*         the second sub-eigenvector matrix).
*
*  ZTEMP  (workspace) REAL array, dimension (N)
*
*  INFO   (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Jeff Rutter, Computer Science Division, University of California
*     at Berkeley, USA
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, HALF, ONE
      PARAMETER          ( ZERO = 0.0E0, HALF = 0.5E0, ONE = 1.0E0 )
*     ..
*     .. Local Scalars ..
      INTEGER            BSIZ1, BSIZ2, CURR, I, K, MID, PSIZ1, PSIZ2,
     $                   PTR, ZPTR1
*     ..
*     .. External Subroutines ..
      EXTERNAL           SCOPY, SGEMV, SROT, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          INT, REAL, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
*
      IF( N.LT.0 ) THEN
         INFO = -1
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SLAEDA', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Determine location of first number in second half.
*
      MID = N / 2 + 1
*
*     Gather last/first rows of appropriate eigenblocks into center of Z
*
      PTR = 1
*
*     Determine location of lowest level subproblem in the full storage
*     scheme
*
      CURR = PTR + CURPBM*2**CURLVL + 2**( CURLVL-1 ) - 1
*
*     Determine size of these matrices.  We add HALF to the value of
*     the SQRT in case the machine underestimates one of these square
*     roots.
*
      BSIZ1 = INT( HALF+SQRT( REAL( QPTR( CURR+1 )-QPTR( CURR ) ) ) )
      BSIZ2 = INT( HALF+SQRT( REAL( QPTR( CURR+2 )-QPTR( CURR+1 ) ) ) )
      DO 10 K = 1, MID - BSIZ1 - 1
         Z( K ) = ZERO
   10 CONTINUE
      CALL SCOPY( BSIZ1, Q( QPTR( CURR )+BSIZ1-1 ), BSIZ1,
     $            Z( MID-BSIZ1 ), 1 )
      CALL SCOPY( BSIZ2, Q( QPTR( CURR+1 ) ), BSIZ2, Z( MID ), 1 )
      DO 20 K = MID + BSIZ2, N
         Z( K ) = ZERO
   20 CONTINUE
*
*     Loop through remaining levels 1 -> CURLVL applying the Givens
*     rotations and permutation and then multiplying the center matrices
*     against the current Z.
*
      PTR = 2**TLVLS + 1
      DO 70 K = 1, CURLVL - 1
         CURR = PTR + CURPBM*2**( CURLVL-K ) + 2**( CURLVL-K-1 ) - 1
         PSIZ1 = PRMPTR( CURR+1 ) - PRMPTR( CURR )
         PSIZ2 = PRMPTR( CURR+2 ) - PRMPTR( CURR+1 )
         ZPTR1 = MID - PSIZ1
*
*       Apply Givens at CURR and CURR+1
*
         DO 30 I = GIVPTR( CURR ), GIVPTR( CURR+1 ) - 1
            CALL SROT( 1, Z( ZPTR1+GIVCOL( 1, I )-1 ), 1,
     $                 Z( ZPTR1+GIVCOL( 2, I )-1 ), 1, GIVNUM( 1, I ),
     $                 GIVNUM( 2, I ) )
   30    CONTINUE
         DO 40 I = GIVPTR( CURR+1 ), GIVPTR( CURR+2 ) - 1
            CALL SROT( 1, Z( MID-1+GIVCOL( 1, I ) ), 1,
     $                 Z( MID-1+GIVCOL( 2, I ) ), 1, GIVNUM( 1, I ),
     $                 GIVNUM( 2, I ) )
   40    CONTINUE
         PSIZ1 = PRMPTR( CURR+1 ) - PRMPTR( CURR )
         PSIZ2 = PRMPTR( CURR+2 ) - PRMPTR( CURR+1 )
         DO 50 I = 0, PSIZ1 - 1
            ZTEMP( I+1 ) = Z( ZPTR1+PERM( PRMPTR( CURR )+I )-1 )
   50    CONTINUE
         DO 60 I = 0, PSIZ2 - 1
            ZTEMP( PSIZ1+I+1 ) = Z( MID+PERM( PRMPTR( CURR+1 )+I )-1 )
   60    CONTINUE
*
*        Multiply Blocks at CURR and CURR+1
*
*        Determine size of these matrices.  We add HALF to the value of
*        the SQRT in case the machine underestimates one of these
*        square roots.
*
         BSIZ1 = INT( HALF+SQRT( REAL( QPTR( CURR+1 )-QPTR( CURR ) ) ) )
         BSIZ2 = INT( HALF+SQRT( REAL( QPTR( CURR+2 )-QPTR( CURR+
     $           1 ) ) ) )
         IF( BSIZ1.GT.0 ) THEN
            CALL SGEMV( 'T', BSIZ1, BSIZ1, ONE, Q( QPTR( CURR ) ),
     $                  BSIZ1, ZTEMP( 1 ), 1, ZERO, Z( ZPTR1 ), 1 )
         END IF
         CALL SCOPY( PSIZ1-BSIZ1, ZTEMP( BSIZ1+1 ), 1, Z( ZPTR1+BSIZ1 ),
     $               1 )
         IF( BSIZ2.GT.0 ) THEN
            CALL SGEMV( 'T', BSIZ2, BSIZ2, ONE, Q( QPTR( CURR+1 ) ),
     $                  BSIZ2, ZTEMP( PSIZ1+1 ), 1, ZERO, Z( MID ), 1 )
         END IF
         CALL SCOPY( PSIZ2-BSIZ2, ZTEMP( PSIZ1+BSIZ2+1 ), 1,
     $               Z( MID+BSIZ2 ), 1 )
*
         PTR = PTR + 2**( TLVLS-K )
   70 CONTINUE
*
      RETURN
*
*     End of SLAEDA
*
      END