summaryrefslogtreecommitdiff
path: root/SRC/slae2.f
blob: 25b6fed7308129067be49a5ca581e70e51cc963f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
*> \brief \b SLAE2
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download SLAE2 + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slae2.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slae2.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slae2.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition
*  ==========
*
*       SUBROUTINE SLAE2( A, B, C, RT1, RT2 )
* 
*       .. Scalar Arguments ..
*       REAL               A, B, C, RT1, RT2
*       ..
*  
*  Purpose
*  =======
*
*>\details \b Purpose:
*>\verbatim
*>
*> SLAE2  computes the eigenvalues of a 2-by-2 symmetric matrix
*>    [  A   B  ]
*>    [  B   C  ].
*> On return, RT1 is the eigenvalue of larger absolute value, and RT2
*> is the eigenvalue of smaller absolute value.
*>
*>\endverbatim
*
*  Arguments
*  =========
*
*> \param[in] A
*> \verbatim
*>          A is REAL
*>          The (1,1) element of the 2-by-2 matrix.
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*>          B is REAL
*>          The (1,2) and (2,1) elements of the 2-by-2 matrix.
*> \endverbatim
*>
*> \param[in] C
*> \verbatim
*>          C is REAL
*>          The (2,2) element of the 2-by-2 matrix.
*> \endverbatim
*>
*> \param[out] RT1
*> \verbatim
*>          RT1 is REAL
*>          The eigenvalue of larger absolute value.
*> \endverbatim
*>
*> \param[out] RT2
*> \verbatim
*>          RT2 is REAL
*>          The eigenvalue of smaller absolute value.
*> \endverbatim
*>
*
*  Authors
*  =======
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup auxOTHERauxiliary
*
*
*  Further Details
*  ===============
*>\details \b Further \b Details
*> \verbatim
*>
*>  RT1 is accurate to a few ulps barring over/underflow.
*>
*>  RT2 may be inaccurate if there is massive cancellation in the
*>  determinant A*C-B*B; higher precision or correctly rounded or
*>  correctly truncated arithmetic would be needed to compute RT2
*>  accurately in all cases.
*>
*>  Overflow is possible only if RT1 is within a factor of 5 of overflow.
*>  Underflow is harmless if the input data is 0 or exceeds
*>     underflow_threshold / macheps.
*>
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE SLAE2( A, B, C, RT1, RT2 )
*
*  -- LAPACK auxiliary routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      REAL               A, B, C, RT1, RT2
*     ..
*
* =====================================================================
*
*     .. Parameters ..
      REAL               ONE
      PARAMETER          ( ONE = 1.0E0 )
      REAL               TWO
      PARAMETER          ( TWO = 2.0E0 )
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0E0 )
      REAL               HALF
      PARAMETER          ( HALF = 0.5E0 )
*     ..
*     .. Local Scalars ..
      REAL               AB, ACMN, ACMX, ADF, DF, RT, SM, TB
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, SQRT
*     ..
*     .. Executable Statements ..
*
*     Compute the eigenvalues
*
      SM = A + C
      DF = A - C
      ADF = ABS( DF )
      TB = B + B
      AB = ABS( TB )
      IF( ABS( A ).GT.ABS( C ) ) THEN
         ACMX = A
         ACMN = C
      ELSE
         ACMX = C
         ACMN = A
      END IF
      IF( ADF.GT.AB ) THEN
         RT = ADF*SQRT( ONE+( AB / ADF )**2 )
      ELSE IF( ADF.LT.AB ) THEN
         RT = AB*SQRT( ONE+( ADF / AB )**2 )
      ELSE
*
*        Includes case AB=ADF=0
*
         RT = AB*SQRT( TWO )
      END IF
      IF( SM.LT.ZERO ) THEN
         RT1 = HALF*( SM-RT )
*
*        Order of execution important.
*        To get fully accurate smaller eigenvalue,
*        next line needs to be executed in higher precision.
*
         RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
      ELSE IF( SM.GT.ZERO ) THEN
         RT1 = HALF*( SM+RT )
*
*        Order of execution important.
*        To get fully accurate smaller eigenvalue,
*        next line needs to be executed in higher precision.
*
         RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
      ELSE
*
*        Includes case RT1 = RT2 = 0
*
         RT1 = HALF*RT
         RT2 = -HALF*RT
      END IF
      RETURN
*
*     End of SLAE2
*
      END