summaryrefslogtreecommitdiff
path: root/SRC/sggqrf.f
blob: 7d2c523d09063fba2609303a5562969c169b642e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
      SUBROUTINE SGGQRF( N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK,
     $                   LWORK, INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDB, LWORK, M, N, P
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ),
     $                   WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  SGGQRF computes a generalized QR factorization of an N-by-M matrix A
*  and an N-by-P matrix B:
*
*              A = Q*R,        B = Q*T*Z,
*
*  where Q is an N-by-N orthogonal matrix, Z is a P-by-P orthogonal
*  matrix, and R and T assume one of the forms:
*
*  if N >= M,  R = ( R11 ) M  ,   or if N < M,  R = ( R11  R12 ) N,
*                  (  0  ) N-M                         N   M-N
*                     M
*
*  where R11 is upper triangular, and
*
*  if N <= P,  T = ( 0  T12 ) N,   or if N > P,  T = ( T11 ) N-P,
*                   P-N  N                           ( T21 ) P
*                                                       P
*
*  where T12 or T21 is upper triangular.
*
*  In particular, if B is square and nonsingular, the GQR factorization
*  of A and B implicitly gives the QR factorization of inv(B)*A:
*
*               inv(B)*A = Z'*(inv(T)*R)
*
*  where inv(B) denotes the inverse of the matrix B, and Z' denotes the
*  transpose of the matrix Z.
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The number of rows of the matrices A and B. N >= 0.
*
*  M       (input) INTEGER
*          The number of columns of the matrix A.  M >= 0.
*
*  P       (input) INTEGER
*          The number of columns of the matrix B.  P >= 0.
*
*  A       (input/output) REAL array, dimension (LDA,M)
*          On entry, the N-by-M matrix A.
*          On exit, the elements on and above the diagonal of the array
*          contain the min(N,M)-by-M upper trapezoidal matrix R (R is
*          upper triangular if N >= M); the elements below the diagonal,
*          with the array TAUA, represent the orthogonal matrix Q as a
*          product of min(N,M) elementary reflectors (see Further
*          Details).
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A. LDA >= max(1,N).
*
*  TAUA    (output) REAL array, dimension (min(N,M))
*          The scalar factors of the elementary reflectors which
*          represent the orthogonal matrix Q (see Further Details).
*
*  B       (input/output) REAL array, dimension (LDB,P)
*          On entry, the N-by-P matrix B.
*          On exit, if N <= P, the upper triangle of the subarray
*          B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
*          if N > P, the elements on and above the (N-P)-th subdiagonal
*          contain the N-by-P upper trapezoidal matrix T; the remaining
*          elements, with the array TAUB, represent the orthogonal
*          matrix Z as a product of elementary reflectors (see Further
*          Details).
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B. LDB >= max(1,N).
*
*  TAUB    (output) REAL array, dimension (min(N,P))
*          The scalar factors of the elementary reflectors which
*          represent the orthogonal matrix Z (see Further Details).
*
*  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK))
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK. LWORK >= max(1,N,M,P).
*          For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3),
*          where NB1 is the optimal blocksize for the QR factorization
*          of an N-by-M matrix, NB2 is the optimal blocksize for the
*          RQ factorization of an N-by-P matrix, and NB3 is the optimal
*          blocksize for a call of SORMQR.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*
*  Further Details
*  ===============
*
*  The matrix Q is represented as a product of elementary reflectors
*
*     Q = H(1) H(2) . . . H(k), where k = min(n,m).
*
*  Each H(i) has the form
*
*     H(i) = I - taua * v * v'
*
*  where taua is a real scalar, and v is a real vector with
*  v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
*  and taua in TAUA(i).
*  To form Q explicitly, use LAPACK subroutine SORGQR.
*  To use Q to update another matrix, use LAPACK subroutine SORMQR.
*
*  The matrix Z is represented as a product of elementary reflectors
*
*     Z = H(1) H(2) . . . H(k), where k = min(n,p).
*
*  Each H(i) has the form
*
*     H(i) = I - taub * v * v'
*
*  where taub is a real scalar, and v is a real vector with
*  v(p-k+i+1:p) = 0 and v(p-k+i) = 1; v(1:p-k+i-1) is stored on exit in
*  B(n-k+i,1:p-k+i-1), and taub in TAUB(i).
*  To form Z explicitly, use LAPACK subroutine SORGRQ.
*  To use Z to update another matrix, use LAPACK subroutine SORMRQ.
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            LQUERY
      INTEGER            LOPT, LWKOPT, NB, NB1, NB2, NB3
*     ..
*     .. External Subroutines ..
      EXTERNAL           SGEQRF, SGERQF, SORMQR, XERBLA
*     ..
*     .. External Functions ..
      INTEGER            ILAENV
      EXTERNAL           ILAENV 
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          INT, MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters
*
      INFO = 0
      NB1 = ILAENV( 1, 'SGEQRF', ' ', N, M, -1, -1 )
      NB2 = ILAENV( 1, 'SGERQF', ' ', N, P, -1, -1 )
      NB3 = ILAENV( 1, 'SORMQR', ' ', N, M, P, -1 )
      NB = MAX( NB1, NB2, NB3 )
      LWKOPT = MAX( N, M, P )*NB
      WORK( 1 ) = LWKOPT
      LQUERY = ( LWORK.EQ.-1 )
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( M.LT.0 ) THEN
         INFO = -2
      ELSE IF( P.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -8
      ELSE IF( LWORK.LT.MAX( 1, N, M, P ) .AND. .NOT.LQUERY ) THEN
         INFO = -11
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SGGQRF', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     QR factorization of N-by-M matrix A: A = Q*R
*
      CALL SGEQRF( N, M, A, LDA, TAUA, WORK, LWORK, INFO )
      LOPT = WORK( 1 )
*
*     Update B := Q'*B.
*
      CALL SORMQR( 'Left', 'Transpose', N, P, MIN( N, M ), A, LDA, TAUA,
     $             B, LDB, WORK, LWORK, INFO )
      LOPT = MAX( LOPT, INT( WORK( 1 ) ) )
*
*     RQ factorization of N-by-P matrix B: B = T*Z.
*
      CALL SGERQF( N, P, B, LDB, TAUB, WORK, LWORK, INFO )
      WORK( 1 ) = MAX( LOPT, INT( WORK( 1 ) ) )
*
      RETURN
*
*     End of SGGQRF
*
      END