1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
|
*> \brief <b> SGGEV3 computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices (blocked algorithm)</b>
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SGGEV3 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sggev3.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sggev3.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sggev3.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR,
* $ ALPHAI, BETA, VL, LDVL, VR, LDVR, WORK, LWORK,
* $ INFO )
*
* .. Scalar Arguments ..
* CHARACTER JOBVL, JOBVR
* INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N
* ..
* .. Array Arguments ..
* REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
* $ B( LDB, * ), BETA( * ), VL( LDVL, * ),
* $ VR( LDVR, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SGGEV3 computes for a pair of N-by-N real nonsymmetric matrices (A,B)
*> the generalized eigenvalues, and optionally, the left and/or right
*> generalized eigenvectors.
*>
*> A generalized eigenvalue for a pair of matrices (A,B) is a scalar
*> lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
*> singular. It is usually represented as the pair (alpha,beta), as
*> there is a reasonable interpretation for beta=0, and even for both
*> being zero.
*>
*> The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
*> of (A,B) satisfies
*>
*> A * v(j) = lambda(j) * B * v(j).
*>
*> The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
*> of (A,B) satisfies
*>
*> u(j)**H * A = lambda(j) * u(j)**H * B .
*>
*> where u(j)**H is the conjugate-transpose of u(j).
*>
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] JOBVL
*> \verbatim
*> JOBVL is CHARACTER*1
*> = 'N': do not compute the left generalized eigenvectors;
*> = 'V': compute the left generalized eigenvectors.
*> \endverbatim
*>
*> \param[in] JOBVR
*> \verbatim
*> JOBVR is CHARACTER*1
*> = 'N': do not compute the right generalized eigenvectors;
*> = 'V': compute the right generalized eigenvectors.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrices A, B, VL, and VR. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is REAL array, dimension (LDA, N)
*> On entry, the matrix A in the pair (A,B).
*> On exit, A has been overwritten.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is REAL array, dimension (LDB, N)
*> On entry, the matrix B in the pair (A,B).
*> On exit, B has been overwritten.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] ALPHAR
*> \verbatim
*> ALPHAR is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] ALPHAI
*> \verbatim
*> ALPHAI is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] BETA
*> \verbatim
*> BETA is REAL array, dimension (N)
*> On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
*> be the generalized eigenvalues. If ALPHAI(j) is zero, then
*> the j-th eigenvalue is real; if positive, then the j-th and
*> (j+1)-st eigenvalues are a complex conjugate pair, with
*> ALPHAI(j+1) negative.
*>
*> Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
*> may easily over- or underflow, and BETA(j) may even be zero.
*> Thus, the user should avoid naively computing the ratio
*> alpha/beta. However, ALPHAR and ALPHAI will be always less
*> than and usually comparable with norm(A) in magnitude, and
*> BETA always less than and usually comparable with norm(B).
*> \endverbatim
*>
*> \param[out] VL
*> \verbatim
*> VL is REAL array, dimension (LDVL,N)
*> If JOBVL = 'V', the left eigenvectors u(j) are stored one
*> after another in the columns of VL, in the same order as
*> their eigenvalues. If the j-th eigenvalue is real, then
*> u(j) = VL(:,j), the j-th column of VL. If the j-th and
*> (j+1)-th eigenvalues form a complex conjugate pair, then
*> u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).
*> Each eigenvector is scaled so the largest component has
*> abs(real part)+abs(imag. part)=1.
*> Not referenced if JOBVL = 'N'.
*> \endverbatim
*>
*> \param[in] LDVL
*> \verbatim
*> LDVL is INTEGER
*> The leading dimension of the matrix VL. LDVL >= 1, and
*> if JOBVL = 'V', LDVL >= N.
*> \endverbatim
*>
*> \param[out] VR
*> \verbatim
*> VR is REAL array, dimension (LDVR,N)
*> If JOBVR = 'V', the right eigenvectors v(j) are stored one
*> after another in the columns of VR, in the same order as
*> their eigenvalues. If the j-th eigenvalue is real, then
*> v(j) = VR(:,j), the j-th column of VR. If the j-th and
*> (j+1)-th eigenvalues form a complex conjugate pair, then
*> v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).
*> Each eigenvector is scaled so the largest component has
*> abs(real part)+abs(imag. part)=1.
*> Not referenced if JOBVR = 'N'.
*> \endverbatim
*>
*> \param[in] LDVR
*> \verbatim
*> LDVR is INTEGER
*> The leading dimension of the matrix VR. LDVR >= 1, and
*> if JOBVR = 'V', LDVR >= N.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> = 1,...,N:
*> The QZ iteration failed. No eigenvectors have been
*> calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
*> should be correct for j=INFO+1,...,N.
*> > N: =N+1: other than QZ iteration failed in SHGEQZ.
*> =N+2: error return from STGEVC.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date January 2015
*
*> \ingroup realGEeigen
*
* =====================================================================
SUBROUTINE SGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR,
$ ALPHAI, BETA, VL, LDVL, VR, LDVR, WORK, LWORK,
$ INFO )
*
* -- LAPACK driver routine (version 3.6.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* January 2015
*
* .. Scalar Arguments ..
CHARACTER JOBVL, JOBVR
INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N
* ..
* .. Array Arguments ..
REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
$ B( LDB, * ), BETA( * ), VL( LDVL, * ),
$ VR( LDVR, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY
CHARACTER CHTEMP
INTEGER ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, ILO,
$ IN, IRIGHT, IROWS, ITAU, IWRK, JC, JR, LWKOPT
REAL ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
$ SMLNUM, TEMP
* ..
* .. Local Arrays ..
LOGICAL LDUMMA( 1 )
* ..
* .. External Subroutines ..
EXTERNAL SGEQRF, SGGBAK, SGGBAL, SGGHD3, SHGEQZ, SLABAD,
$ SLACPY, SLASCL, SLASET, SORGQR, SORMQR, STGEVC,
$ XERBLA
* ..
* .. External Functions ..
LOGICAL LSAME
REAL SLAMCH, SLANGE
EXTERNAL LSAME, SLAMCH, SLANGE
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, SQRT
* ..
* .. Executable Statements ..
*
* Decode the input arguments
*
IF( LSAME( JOBVL, 'N' ) ) THEN
IJOBVL = 1
ILVL = .FALSE.
ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
IJOBVL = 2
ILVL = .TRUE.
ELSE
IJOBVL = -1
ILVL = .FALSE.
END IF
*
IF( LSAME( JOBVR, 'N' ) ) THEN
IJOBVR = 1
ILVR = .FALSE.
ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
IJOBVR = 2
ILVR = .TRUE.
ELSE
IJOBVR = -1
ILVR = .FALSE.
END IF
ILV = ILVL .OR. ILVR
*
* Test the input arguments
*
INFO = 0
LQUERY = ( LWORK.EQ.-1 )
IF( IJOBVL.LE.0 ) THEN
INFO = -1
ELSE IF( IJOBVR.LE.0 ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
INFO = -12
ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
INFO = -14
ELSE IF( LWORK.LT.MAX( 1, 8*N ) .AND. .NOT.LQUERY ) THEN
INFO = -16
END IF
*
* Compute workspace
*
IF( INFO.EQ.0 ) THEN
CALL SGEQRF( N, N, B, LDB, WORK, WORK, -1, IERR )
LWKOPT = MAX( 1, 8*N, 3*N+INT ( WORK( 1 ) ) )
CALL SORMQR( 'L', 'T', N, N, N, B, LDB, WORK, A, LDA, WORK,
$ -1, IERR )
LWKOPT = MAX( LWKOPT, 3*N+INT ( WORK( 1 ) ) )
CALL SGGHD3( JOBVL, JOBVR, N, 1, N, A, LDA, B, LDB, VL, LDVL,
$ VR, LDVR, WORK, -1, IERR )
LWKOPT = MAX( LWKOPT, 3*N+INT ( WORK( 1 ) ) )
IF( ILVL ) THEN
CALL SORGQR( N, N, N, VL, LDVL, WORK, WORK, -1, IERR )
LWKOPT = MAX( LWKOPT, 3*N+INT ( WORK( 1 ) ) )
CALL SHGEQZ( 'S', JOBVL, JOBVR, N, 1, N, A, LDA, B, LDB,
$ ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR,
$ WORK, -1, IERR )
LWKOPT = MAX( LWKOPT, 2*N+INT ( WORK( 1 ) ) )
ELSE
CALL SHGEQZ( 'E', JOBVL, JOBVR, N, 1, N, A, LDA, B, LDB,
$ ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR,
$ WORK, -1, IERR )
LWKOPT = MAX( LWKOPT, 2*N+INT ( WORK( 1 ) ) )
END IF
WORK( 1 ) = REAL( LWKOPT )
*
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SGGEV3 ', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Get machine constants
*
EPS = SLAMCH( 'P' )
SMLNUM = SLAMCH( 'S' )
BIGNUM = ONE / SMLNUM
CALL SLABAD( SMLNUM, BIGNUM )
SMLNUM = SQRT( SMLNUM ) / EPS
BIGNUM = ONE / SMLNUM
*
* Scale A if max element outside range [SMLNUM,BIGNUM]
*
ANRM = SLANGE( 'M', N, N, A, LDA, WORK )
ILASCL = .FALSE.
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
ANRMTO = SMLNUM
ILASCL = .TRUE.
ELSE IF( ANRM.GT.BIGNUM ) THEN
ANRMTO = BIGNUM
ILASCL = .TRUE.
END IF
IF( ILASCL )
$ CALL SLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
*
* Scale B if max element outside range [SMLNUM,BIGNUM]
*
BNRM = SLANGE( 'M', N, N, B, LDB, WORK )
ILBSCL = .FALSE.
IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
BNRMTO = SMLNUM
ILBSCL = .TRUE.
ELSE IF( BNRM.GT.BIGNUM ) THEN
BNRMTO = BIGNUM
ILBSCL = .TRUE.
END IF
IF( ILBSCL )
$ CALL SLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
*
* Permute the matrices A, B to isolate eigenvalues if possible
*
ILEFT = 1
IRIGHT = N + 1
IWRK = IRIGHT + N
CALL SGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
$ WORK( IRIGHT ), WORK( IWRK ), IERR )
*
* Reduce B to triangular form (QR decomposition of B)
*
IROWS = IHI + 1 - ILO
IF( ILV ) THEN
ICOLS = N + 1 - ILO
ELSE
ICOLS = IROWS
END IF
ITAU = IWRK
IWRK = ITAU + IROWS
CALL SGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
$ WORK( IWRK ), LWORK+1-IWRK, IERR )
*
* Apply the orthogonal transformation to matrix A
*
CALL SORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
$ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
$ LWORK+1-IWRK, IERR )
*
* Initialize VL
*
IF( ILVL ) THEN
CALL SLASET( 'Full', N, N, ZERO, ONE, VL, LDVL )
IF( IROWS.GT.1 ) THEN
CALL SLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
$ VL( ILO+1, ILO ), LDVL )
END IF
CALL SORGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
$ WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
END IF
*
* Initialize VR
*
IF( ILVR )
$ CALL SLASET( 'Full', N, N, ZERO, ONE, VR, LDVR )
*
* Reduce to generalized Hessenberg form
*
IF( ILV ) THEN
*
* Eigenvectors requested -- work on whole matrix.
*
CALL SGGHD3( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
$ LDVL, VR, LDVR, WORK( IWRK ), LWORK+1-IWRK, IERR )
ELSE
CALL SGGHD3( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
$ B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR,
$ WORK( IWRK ), LWORK+1-IWRK, IERR )
END IF
*
* Perform QZ algorithm (Compute eigenvalues, and optionally, the
* Schur forms and Schur vectors)
*
IWRK = ITAU
IF( ILV ) THEN
CHTEMP = 'S'
ELSE
CHTEMP = 'E'
END IF
CALL SHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
$ ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR,
$ WORK( IWRK ), LWORK+1-IWRK, IERR )
IF( IERR.NE.0 ) THEN
IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
INFO = IERR
ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
INFO = IERR - N
ELSE
INFO = N + 1
END IF
GO TO 110
END IF
*
* Compute Eigenvectors
*
IF( ILV ) THEN
IF( ILVL ) THEN
IF( ILVR ) THEN
CHTEMP = 'B'
ELSE
CHTEMP = 'L'
END IF
ELSE
CHTEMP = 'R'
END IF
CALL STGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
$ VR, LDVR, N, IN, WORK( IWRK ), IERR )
IF( IERR.NE.0 ) THEN
INFO = N + 2
GO TO 110
END IF
*
* Undo balancing on VL and VR and normalization
*
IF( ILVL ) THEN
CALL SGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
$ WORK( IRIGHT ), N, VL, LDVL, IERR )
DO 50 JC = 1, N
IF( ALPHAI( JC ).LT.ZERO )
$ GO TO 50
TEMP = ZERO
IF( ALPHAI( JC ).EQ.ZERO ) THEN
DO 10 JR = 1, N
TEMP = MAX( TEMP, ABS( VL( JR, JC ) ) )
10 CONTINUE
ELSE
DO 20 JR = 1, N
TEMP = MAX( TEMP, ABS( VL( JR, JC ) )+
$ ABS( VL( JR, JC+1 ) ) )
20 CONTINUE
END IF
IF( TEMP.LT.SMLNUM )
$ GO TO 50
TEMP = ONE / TEMP
IF( ALPHAI( JC ).EQ.ZERO ) THEN
DO 30 JR = 1, N
VL( JR, JC ) = VL( JR, JC )*TEMP
30 CONTINUE
ELSE
DO 40 JR = 1, N
VL( JR, JC ) = VL( JR, JC )*TEMP
VL( JR, JC+1 ) = VL( JR, JC+1 )*TEMP
40 CONTINUE
END IF
50 CONTINUE
END IF
IF( ILVR ) THEN
CALL SGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
$ WORK( IRIGHT ), N, VR, LDVR, IERR )
DO 100 JC = 1, N
IF( ALPHAI( JC ).LT.ZERO )
$ GO TO 100
TEMP = ZERO
IF( ALPHAI( JC ).EQ.ZERO ) THEN
DO 60 JR = 1, N
TEMP = MAX( TEMP, ABS( VR( JR, JC ) ) )
60 CONTINUE
ELSE
DO 70 JR = 1, N
TEMP = MAX( TEMP, ABS( VR( JR, JC ) )+
$ ABS( VR( JR, JC+1 ) ) )
70 CONTINUE
END IF
IF( TEMP.LT.SMLNUM )
$ GO TO 100
TEMP = ONE / TEMP
IF( ALPHAI( JC ).EQ.ZERO ) THEN
DO 80 JR = 1, N
VR( JR, JC ) = VR( JR, JC )*TEMP
80 CONTINUE
ELSE
DO 90 JR = 1, N
VR( JR, JC ) = VR( JR, JC )*TEMP
VR( JR, JC+1 ) = VR( JR, JC+1 )*TEMP
90 CONTINUE
END IF
100 CONTINUE
END IF
*
* End of eigenvector calculation
*
END IF
*
* Undo scaling if necessary
*
110 CONTINUE
*
IF( ILASCL ) THEN
CALL SLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
CALL SLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
END IF
*
IF( ILBSCL ) THEN
CALL SLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
END IF
*
WORK( 1 ) = REAL( LWKOPT )
RETURN
*
* End of SGGEV3
*
END
|