1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
|
* Definition:
* ===========
*
* SUBROUTINE SGEMLQT( SIDE, TRANS, M, N, K, MB, V, LDV, T, LDT,
* C, LDC, WORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER SIDE, TRANS
* INTEGER INFO, K, LDV, LDC, M, N, MB, LDT
* ..
* .. Array Arguments ..
* REAL V( LDV, * ), C( LDC, * ), T( LDT, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DGEMQRT overwrites the general real M-by-N matrix C with
*>
*> SIDE = 'L' SIDE = 'R'
*> TRANS = 'N': Q C C Q
*> TRANS = 'T': Q**T C C Q**T
*>
*> where Q is a real orthogonal matrix defined as the product of K
*> elementary reflectors:
*>
*> Q = H(1) H(2) . . . H(K) = I - V T V**T
*>
*> generated using the compact WY representation as returned by DGELQT.
*>
*> Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] SIDE
*> \verbatim
*> SIDE is CHARACTER*1
*> = 'L': apply Q or Q**T from the Left;
*> = 'R': apply Q or Q**T from the Right.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> = 'N': No transpose, apply Q;
*> = 'C': Transpose, apply Q**T.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix C. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix C. N >= 0.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*> K is INTEGER
*> The number of elementary reflectors whose product defines
*> the matrix Q.
*> If SIDE = 'L', M >= K >= 0;
*> if SIDE = 'R', N >= K >= 0.
*> \endverbatim
*>
*> \param[in] MB
*> \verbatim
*> MB is INTEGER
*> The block size used for the storage of T. K >= MB >= 1.
*> This must be the same value of MB used to generate T
*> in DGELQT.
*> \endverbatim
*>
*> \param[in] V
*> \verbatim
*> V is REAL array, dimension (LDV,K)
*> The i-th row must contain the vector which defines the
*> elementary reflector H(i), for i = 1,2,...,k, as returned by
*> DGELQT in the first K rows of its array argument A.
*> \endverbatim
*>
*> \param[in] LDV
*> \verbatim
*> LDV is INTEGER
*> The leading dimension of the array V.
*> If SIDE = 'L', LDA >= max(1,M);
*> if SIDE = 'R', LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in] T
*> \verbatim
*> T is REAL array, dimension (LDT,K)
*> The upper triangular factors of the block reflectors
*> as returned by DGELQT, stored as a MB-by-M matrix.
*> \endverbatim
*>
*> \param[in] LDT
*> \verbatim
*> LDT is INTEGER
*> The leading dimension of the array T. LDT >= MB.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*> C is REAL array, dimension (LDC,N)
*> On entry, the M-by-N matrix C.
*> On exit, C is overwritten by Q C, Q**T C, C Q**T or C Q.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> The leading dimension of the array C. LDC >= max(1,M).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array. The dimension of
*> WORK is N*MB if SIDE = 'L', or M*MB if SIDE = 'R'.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup doubleGEcomputational
*
* =====================================================================
SUBROUTINE SGEMLQT( SIDE, TRANS, M, N, K, MB, V, LDV, T, LDT,
$ C, LDC, WORK, INFO )
*
* -- LAPACK computational routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
CHARACTER SIDE, TRANS
INTEGER INFO, K, LDV, LDC, M, N, MB, LDT
* ..
* .. Array Arguments ..
REAL V( LDV, * ), C( LDC, * ), T( LDT, * ), WORK( * )
* ..
*
* =====================================================================
*
* ..
* .. Local Scalars ..
LOGICAL LEFT, RIGHT, TRAN, NOTRAN
INTEGER I, IB, LDWORK, KF, Q
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, DLARFB
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* .. Test the input arguments ..
*
INFO = 0
LEFT = LSAME( SIDE, 'L' )
RIGHT = LSAME( SIDE, 'R' )
TRAN = LSAME( TRANS, 'T' )
NOTRAN = LSAME( TRANS, 'N' )
*
IF( LEFT ) THEN
LDWORK = MAX( 1, N )
ELSE IF ( RIGHT ) THEN
LDWORK = MAX( 1, M )
END IF
IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
INFO = -1
ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
INFO = -2
ELSE IF( M.LT.0 ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( K.LT.0) THEN
INFO = -5
ELSE IF( MB.LT.1 .OR. (MB.GT.K .AND. K.GT.0)) THEN
INFO = -6
ELSE IF( LDV.LT.MAX( 1, K ) ) THEN
INFO = -8
ELSE IF( LDT.LT.MB ) THEN
INFO = -10
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
INFO = -12
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SGEMLQT', -INFO )
RETURN
END IF
*
* .. Quick return if possible ..
*
IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) RETURN
*
IF( LEFT .AND. NOTRAN ) THEN
*
DO I = 1, K, MB
IB = MIN( MB, K-I+1 )
CALL SLARFB( 'L', 'T', 'F', 'R', M-I+1, N, IB,
$ V( I, I ), LDV, T( 1, I ), LDT,
$ C( I, 1 ), LDC, WORK, LDWORK )
END DO
*
ELSE IF( RIGHT .AND. TRAN ) THEN
*
DO I = 1, K, MB
IB = MIN( MB, K-I+1 )
CALL SLARFB( 'R', 'N', 'F', 'R', M, N-I+1, IB,
$ V( I, I ), LDV, T( 1, I ), LDT,
$ C( 1, I ), LDC, WORK, LDWORK )
END DO
*
ELSE IF( LEFT .AND. TRAN ) THEN
*
KF = ((K-1)/MB)*MB+1
DO I = KF, 1, -MB
IB = MIN( MB, K-I+1 )
CALL SLARFB( 'L', 'N', 'F', 'R', M-I+1, N, IB,
$ V( I, I ), LDV, T( 1, I ), LDT,
$ C( I, 1 ), LDC, WORK, LDWORK )
END DO
*
ELSE IF( RIGHT .AND. NOTRAN ) THEN
*
KF = ((K-1)/MB)*MB+1
DO I = KF, 1, -MB
IB = MIN( MB, K-I+1 )
CALL SLARFB( 'R', 'T', 'F', 'R', M, N-I+1, IB,
$ V( I, I ), LDV, T( 1, I ), LDT,
$ C( 1, I ), LDC, WORK, LDWORK )
END DO
*
END IF
*
RETURN
*
* End of SGEMLQT
*
END
|