1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
|
* Definition:
* ===========
*
* SUBROUTINE SGELQT( M, N, MB, A, LDA, T, LDT, WORK, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, LDT, M, N, MB
* ..
* .. Array Arguments ..
* REAL A( LDA, * ), T( LDT, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DGELQT computes a blocked LQ factorization of a real M-by-N matrix A
*> using the compact WY representation of Q.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] MB
*> \verbatim
*> MB is INTEGER
*> The block size to be used in the blocked QR. MIN(M,N) >= MB >= 1.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is REAL array, dimension (LDA,N)
*> On entry, the M-by-N matrix A.
*> On exit, the elements on and below the diagonal of the array
*> contain the M-by-MIN(M,N) lower trapezoidal matrix L (L is
*> lower triangular if M <= N); the elements above the diagonal
*> are the rows of V.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] T
*> \verbatim
*> T is REAL array, dimension (LDT,MIN(M,N))
*> The upper triangular block reflectors stored in compact form
*> as a sequence of upper triangular blocks. See below
*> for further details.
*> \endverbatim
*>
*> \param[in] LDT
*> \verbatim
*> LDT is INTEGER
*> The leading dimension of the array T. LDT >= MB.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (MB*N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date June 2017
*
*> \ingroup doubleGEcomputational
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> The matrix V stores the elementary reflectors H(i) in the i-th row
*> above the diagonal. For example, if M=5 and N=3, the matrix V is
*>
*> V = ( 1 v1 v1 v1 v1 )
*> ( 1 v2 v2 v2 )
*> ( 1 v3 v3 )
*>
*>
*> where the vi's represent the vectors which define H(i), which are returned
*> in the matrix A. The 1's along the diagonal of V are not stored in A.
*> Let K=MIN(M,N). The number of blocks is B = ceiling(K/MB), where each
*> block is of order MB except for the last block, which is of order
*> IB = K - (B-1)*MB. For each of the B blocks, a upper triangular block
*> reflector factor is computed: T1, T2, ..., TB. The MB-by-MB (and IB-by-IB
*> for the last block) T's are stored in the MB-by-K matrix T as
*>
*> T = (T1 T2 ... TB).
*> \endverbatim
*>
* =====================================================================
SUBROUTINE SGELQT( M, N, MB, A, LDA, T, LDT, WORK, INFO )
*
* -- LAPACK computational routine (version 3.7.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* June 2017
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDT, M, N, MB
* ..
* .. Array Arguments ..
REAL A( LDA, * ), T( LDT, * ), WORK( * )
* ..
*
* =====================================================================
*
* ..
* .. Local Scalars ..
INTEGER I, IB, IINFO, K
* ..
* .. External Subroutines ..
EXTERNAL SGEQRT2, SGEQRT3, SLARFB, XERBLA
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( MB.LT.1 .OR. ( MB.GT.MIN(M,N) .AND. MIN(M,N).GT.0 ) )THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -5
ELSE IF( LDT.LT.MB ) THEN
INFO = -7
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SGELQT', -INFO )
RETURN
END IF
*
* Quick return if possible
*
K = MIN( M, N )
IF( K.EQ.0 ) RETURN
*
* Blocked loop of length K
*
DO I = 1, K, MB
IB = MIN( K-I+1, MB )
*
* Compute the LQ factorization of the current block A(I:M,I:I+IB-1)
*
CALL SGELQT3( IB, N-I+1, A(I,I), LDA, T(1,I), LDT, IINFO )
IF( I+IB.LE.M ) THEN
*
* Update by applying H**T to A(I:M,I+IB:N) from the right
*
CALL SLARFB( 'R', 'N', 'F', 'R', M-I-IB+1, N-I+1, IB,
$ A( I, I ), LDA, T( 1, I ), LDT,
$ A( I+IB, I ), LDA, WORK , M-I-IB+1 )
END IF
END DO
RETURN
*
* End of SGELQT
*
END
|