summaryrefslogtreecommitdiff
path: root/SRC/dtrttf.f
blob: 5a6820bbd80148f9f80c4e32cc9f82116e89b42a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
*> \brief \b DTRTTF
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download DTRTTF + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtrttf.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtrttf.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtrttf.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition
*  ==========
*
*       SUBROUTINE DTRTTF( TRANSR, UPLO, N, A, LDA, ARF, INFO )
* 
*       .. Scalar Arguments ..
*       CHARACTER          TRANSR, UPLO
*       INTEGER            INFO, N, LDA
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   A( 0: LDA-1, 0: * ), ARF( 0: * )
*       ..
*  
*  Purpose
*  =======
*
*>\details \b Purpose:
*>\verbatim
*>
*> DTRTTF copies a triangular matrix A from standard full format (TR)
*> to rectangular full packed format (TF) .
*>
*>\endverbatim
*
*  Arguments
*  =========
*
*> \param[in] TRANSR
*> \verbatim
*>          TRANSR is CHARACTER*1
*>          = 'N':  ARF in Normal form is wanted;
*>          = 'T':  ARF in Transpose form is wanted.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          = 'U':  Upper triangle of A is stored;
*>          = 'L':  Lower triangle of A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is DOUBLE PRECISION array, dimension (LDA,N).
*>          On entry, the triangular matrix A.  If UPLO = 'U', the
*>          leading N-by-N upper triangular part of the array A contains
*>          the upper triangular matrix, and the strictly lower
*>          triangular part of A is not referenced.  If UPLO = 'L', the
*>          leading N-by-N lower triangular part of the array A contains
*>          the lower triangular matrix, and the strictly upper
*>          triangular part of A is not referenced.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the matrix A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] ARF
*> \verbatim
*>          ARF is DOUBLE PRECISION array, dimension (NT).
*>          NT=N*(N+1)/2. On exit, the triangular matrix A in RFP format.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*>
*
*  Authors
*  =======
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup doubleOTHERcomputational
*
*
*  Further Details
*  ===============
*>\details \b Further \b Details
*> \verbatim
*>
*>  We first consider Rectangular Full Packed (RFP) Format when N is
*>  even. We give an example where N = 6.
*>
*>      AP is Upper             AP is Lower
*>
*>   00 01 02 03 04 05       00
*>      11 12 13 14 15       10 11
*>         22 23 24 25       20 21 22
*>            33 34 35       30 31 32 33
*>               44 45       40 41 42 43 44
*>                  55       50 51 52 53 54 55
*>
*>
*>  Let TRANSR = 'N'. RFP holds AP as follows:
*>  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
*>  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
*>  the transpose of the first three columns of AP upper.
*>  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
*>  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
*>  the transpose of the last three columns of AP lower.
*>  This covers the case N even and TRANSR = 'N'.
*>
*>         RFP A                   RFP A
*>
*>        03 04 05                33 43 53
*>        13 14 15                00 44 54
*>        23 24 25                10 11 55
*>        33 34 35                20 21 22
*>        00 44 45                30 31 32
*>        01 11 55                40 41 42
*>        02 12 22                50 51 52
*>
*>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
*>  transpose of RFP A above. One therefore gets:
*>
*>
*>           RFP A                   RFP A
*>
*>     03 13 23 33 00 01 02    33 00 10 20 30 40 50
*>     04 14 24 34 44 11 12    43 44 11 21 31 41 51
*>     05 15 25 35 45 55 22    53 54 55 22 32 42 52
*>
*>
*>  We then consider Rectangular Full Packed (RFP) Format when N is
*>  odd. We give an example where N = 5.
*>
*>     AP is Upper                 AP is Lower
*>
*>   00 01 02 03 04              00
*>      11 12 13 14              10 11
*>         22 23 24              20 21 22
*>            33 34              30 31 32 33
*>               44              40 41 42 43 44
*>
*>
*>  Let TRANSR = 'N'. RFP holds AP as follows:
*>  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
*>  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
*>  the transpose of the first two columns of AP upper.
*>  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
*>  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
*>  the transpose of the last two columns of AP lower.
*>  This covers the case N odd and TRANSR = 'N'.
*>
*>         RFP A                   RFP A
*>
*>        02 03 04                00 33 43
*>        12 13 14                10 11 44
*>        22 23 24                20 21 22
*>        00 33 34                30 31 32
*>        01 11 44                40 41 42
*>
*>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
*>  transpose of RFP A above. One therefore gets:
*>
*>           RFP A                   RFP A
*>
*>     02 12 22 00 01             00 10 20 30 40 50
*>     03 13 23 33 11             33 11 21 31 41 51
*>     04 14 24 34 44             43 44 22 32 42 52
*>
*>  Reference
*>  =========
*>
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE DTRTTF( TRANSR, UPLO, N, A, LDA, ARF, INFO )
*
*  -- LAPACK computational routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          TRANSR, UPLO
      INTEGER            INFO, N, LDA
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( 0: LDA-1, 0: * ), ARF( 0: * )
*     ..
*
*  =====================================================================
*
*     ..
*     .. Local Scalars ..
      LOGICAL            LOWER, NISODD, NORMALTRANSR
      INTEGER            I, IJ, J, K, L, N1, N2, NT, NX2, NP1X2
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MOD
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      NORMALTRANSR = LSAME( TRANSR, 'N' )
      LOWER = LSAME( UPLO, 'L' )
      IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DTRTTF', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.LE.1 ) THEN
         IF( N.EQ.1 ) THEN
            ARF( 0 ) = A( 0, 0 )
         END IF
         RETURN
      END IF
*
*     Size of array ARF(0:nt-1)
*
      NT = N*( N+1 ) / 2
*
*     Set N1 and N2 depending on LOWER: for N even N1=N2=K
*
      IF( LOWER ) THEN
         N2 = N / 2
         N1 = N - N2
      ELSE
         N1 = N / 2
         N2 = N - N1
      END IF
*
*     If N is odd, set NISODD = .TRUE., LDA=N+1 and A is (N+1)--by--K2.
*     If N is even, set K = N/2 and NISODD = .FALSE., LDA=N and A is
*     N--by--(N+1)/2.
*
      IF( MOD( N, 2 ).EQ.0 ) THEN
         K = N / 2
         NISODD = .FALSE.
         IF( .NOT.LOWER )
     $      NP1X2 = N + N + 2
      ELSE
         NISODD = .TRUE.
         IF( .NOT.LOWER )
     $      NX2 = N + N
      END IF
*
      IF( NISODD ) THEN
*
*        N is odd
*
         IF( NORMALTRANSR ) THEN
*
*           N is odd and TRANSR = 'N'
*
            IF( LOWER ) THEN
*
*              N is odd, TRANSR = 'N', and UPLO = 'L'
*
               IJ = 0
               DO J = 0, N2
                  DO I = N1, N2 + J
                     ARF( IJ ) = A( N2+J, I )
                     IJ = IJ + 1
                  END DO
                  DO I = J, N - 1
                     ARF( IJ ) = A( I, J )
                     IJ = IJ + 1
                  END DO
               END DO
*
            ELSE
*
*              N is odd, TRANSR = 'N', and UPLO = 'U'
*
               IJ = NT - N
               DO J = N - 1, N1, -1
                  DO I = 0, J
                     ARF( IJ ) = A( I, J )
                     IJ = IJ + 1
                  END DO
                  DO L = J - N1, N1 - 1
                     ARF( IJ ) = A( J-N1, L )
                     IJ = IJ + 1
                  END DO
                  IJ = IJ - NX2
               END DO
*
            END IF
*
         ELSE
*
*           N is odd and TRANSR = 'T'
*
            IF( LOWER ) THEN
*
*              N is odd, TRANSR = 'T', and UPLO = 'L'
*
               IJ = 0
               DO J = 0, N2 - 1
                  DO I = 0, J
                     ARF( IJ ) = A( J, I )
                     IJ = IJ + 1
                  END DO
                  DO I = N1 + J, N - 1
                     ARF( IJ ) = A( I, N1+J )
                     IJ = IJ + 1
                  END DO
               END DO
               DO J = N2, N - 1
                  DO I = 0, N1 - 1
                     ARF( IJ ) = A( J, I )
                     IJ = IJ + 1
                  END DO
               END DO
*
            ELSE
*
*              N is odd, TRANSR = 'T', and UPLO = 'U'
*
               IJ = 0
               DO J = 0, N1
                  DO I = N1, N - 1
                     ARF( IJ ) = A( J, I )
                     IJ = IJ + 1
                  END DO
               END DO
               DO J = 0, N1 - 1
                  DO I = 0, J
                     ARF( IJ ) = A( I, J )
                     IJ = IJ + 1
                  END DO
                  DO L = N2 + J, N - 1
                     ARF( IJ ) = A( N2+J, L )
                     IJ = IJ + 1
                  END DO
               END DO
*
            END IF
*
         END IF
*
      ELSE
*
*        N is even
*
         IF( NORMALTRANSR ) THEN
*
*           N is even and TRANSR = 'N'
*
            IF( LOWER ) THEN
*
*              N is even, TRANSR = 'N', and UPLO = 'L'
*
               IJ = 0
               DO J = 0, K - 1
                  DO I = K, K + J
                     ARF( IJ ) = A( K+J, I )
                     IJ = IJ + 1
                  END DO
                  DO I = J, N - 1
                     ARF( IJ ) = A( I, J )
                     IJ = IJ + 1
                  END DO
               END DO
*
            ELSE
*
*              N is even, TRANSR = 'N', and UPLO = 'U'
*
               IJ = NT - N - 1
               DO J = N - 1, K, -1
                  DO I = 0, J
                     ARF( IJ ) = A( I, J )
                     IJ = IJ + 1
                  END DO
                  DO L = J - K, K - 1
                     ARF( IJ ) = A( J-K, L )
                     IJ = IJ + 1
                  END DO
                  IJ = IJ - NP1X2
               END DO
*
            END IF
*
         ELSE
*
*           N is even and TRANSR = 'T'
*
            IF( LOWER ) THEN
*
*              N is even, TRANSR = 'T', and UPLO = 'L'
*
               IJ = 0
               J = K
               DO I = K, N - 1
                  ARF( IJ ) = A( I, J )
                  IJ = IJ + 1
               END DO
               DO J = 0, K - 2
                  DO I = 0, J
                     ARF( IJ ) = A( J, I )
                     IJ = IJ + 1
                  END DO
                  DO I = K + 1 + J, N - 1
                     ARF( IJ ) = A( I, K+1+J )
                     IJ = IJ + 1
                  END DO
               END DO
               DO J = K - 1, N - 1
                  DO I = 0, K - 1
                     ARF( IJ ) = A( J, I )
                     IJ = IJ + 1
                  END DO
               END DO
*
            ELSE
*
*              N is even, TRANSR = 'T', and UPLO = 'U'
*
               IJ = 0
               DO J = 0, K
                  DO I = K, N - 1
                     ARF( IJ ) = A( J, I )
                     IJ = IJ + 1
                  END DO
               END DO
               DO J = 0, K - 2
                  DO I = 0, J
                     ARF( IJ ) = A( I, J )
                     IJ = IJ + 1
                  END DO
                  DO L = K + 1 + J, N - 1
                     ARF( IJ ) = A( K+1+J, L )
                     IJ = IJ + 1
                  END DO
               END DO
*              Note that here, on exit of the loop, J = K-1
               DO I = 0, J
                  ARF( IJ ) = A( I, J )
                  IJ = IJ + 1
               END DO
*
            END IF
*
         END IF
*
      END IF
*
      RETURN
*
*     End of DTRTTF
*
      END