1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
|
*> \brief \b DTREVC3
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DTREVC3 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtrevc3.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtrevc3.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtrevc3.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DTREVC3( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL,
* VR, LDVR, MM, M, WORK, LWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER HOWMNY, SIDE
* INTEGER INFO, LDT, LDVL, LDVR, LWORK, M, MM, N
* ..
* .. Array Arguments ..
* LOGICAL SELECT( * )
* DOUBLE PRECISION T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
* $ WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DTREVC3 computes some or all of the right and/or left eigenvectors of
*> a real upper quasi-triangular matrix T.
*> Matrices of this type are produced by the Schur factorization of
*> a real general matrix: A = Q*T*Q**T, as computed by DHSEQR.
*>
*> The right eigenvector x and the left eigenvector y of T corresponding
*> to an eigenvalue w are defined by:
*>
*> T*x = w*x, (y**H)*T = w*(y**H)
*>
*> where y**H denotes the conjugate transpose of y.
*> The eigenvalues are not input to this routine, but are read directly
*> from the diagonal blocks of T.
*>
*> This routine returns the matrices X and/or Y of right and left
*> eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an
*> input matrix. If Q is the orthogonal factor that reduces a matrix
*> A to Schur form T, then Q*X and Q*Y are the matrices of right and
*> left eigenvectors of A.
*>
*> This uses a Level 3 BLAS version of the back transformation.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] SIDE
*> \verbatim
*> SIDE is CHARACTER*1
*> = 'R': compute right eigenvectors only;
*> = 'L': compute left eigenvectors only;
*> = 'B': compute both right and left eigenvectors.
*> \endverbatim
*>
*> \param[in] HOWMNY
*> \verbatim
*> HOWMNY is CHARACTER*1
*> = 'A': compute all right and/or left eigenvectors;
*> = 'B': compute all right and/or left eigenvectors,
*> backtransformed by the matrices in VR and/or VL;
*> = 'S': compute selected right and/or left eigenvectors,
*> as indicated by the logical array SELECT.
*> \endverbatim
*>
*> \param[in,out] SELECT
*> \verbatim
*> SELECT is LOGICAL array, dimension (N)
*> If HOWMNY = 'S', SELECT specifies the eigenvectors to be
*> computed.
*> If w(j) is a real eigenvalue, the corresponding real
*> eigenvector is computed if SELECT(j) is .TRUE..
*> If w(j) and w(j+1) are the real and imaginary parts of a
*> complex eigenvalue, the corresponding complex eigenvector is
*> computed if either SELECT(j) or SELECT(j+1) is .TRUE., and
*> on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is set to
*> .FALSE..
*> Not referenced if HOWMNY = 'A' or 'B'.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix T. N >= 0.
*> \endverbatim
*>
*> \param[in] T
*> \verbatim
*> T is DOUBLE PRECISION array, dimension (LDT,N)
*> The upper quasi-triangular matrix T in Schur canonical form.
*> \endverbatim
*>
*> \param[in] LDT
*> \verbatim
*> LDT is INTEGER
*> The leading dimension of the array T. LDT >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] VL
*> \verbatim
*> VL is DOUBLE PRECISION array, dimension (LDVL,MM)
*> On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
*> contain an N-by-N matrix Q (usually the orthogonal matrix Q
*> of Schur vectors returned by DHSEQR).
*> On exit, if SIDE = 'L' or 'B', VL contains:
*> if HOWMNY = 'A', the matrix Y of left eigenvectors of T;
*> if HOWMNY = 'B', the matrix Q*Y;
*> if HOWMNY = 'S', the left eigenvectors of T specified by
*> SELECT, stored consecutively in the columns
*> of VL, in the same order as their
*> eigenvalues.
*> A complex eigenvector corresponding to a complex eigenvalue
*> is stored in two consecutive columns, the first holding the
*> real part, and the second the imaginary part.
*> Not referenced if SIDE = 'R'.
*> \endverbatim
*>
*> \param[in] LDVL
*> \verbatim
*> LDVL is INTEGER
*> The leading dimension of the array VL.
*> LDVL >= 1, and if SIDE = 'L' or 'B', LDVL >= N.
*> \endverbatim
*>
*> \param[in,out] VR
*> \verbatim
*> VR is DOUBLE PRECISION array, dimension (LDVR,MM)
*> On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
*> contain an N-by-N matrix Q (usually the orthogonal matrix Q
*> of Schur vectors returned by DHSEQR).
*> On exit, if SIDE = 'R' or 'B', VR contains:
*> if HOWMNY = 'A', the matrix X of right eigenvectors of T;
*> if HOWMNY = 'B', the matrix Q*X;
*> if HOWMNY = 'S', the right eigenvectors of T specified by
*> SELECT, stored consecutively in the columns
*> of VR, in the same order as their
*> eigenvalues.
*> A complex eigenvector corresponding to a complex eigenvalue
*> is stored in two consecutive columns, the first holding the
*> real part and the second the imaginary part.
*> Not referenced if SIDE = 'L'.
*> \endverbatim
*>
*> \param[in] LDVR
*> \verbatim
*> LDVR is INTEGER
*> The leading dimension of the array VR.
*> LDVR >= 1, and if SIDE = 'R' or 'B', LDVR >= N.
*> \endverbatim
*>
*> \param[in] MM
*> \verbatim
*> MM is INTEGER
*> The number of columns in the arrays VL and/or VR. MM >= M.
*> \endverbatim
*>
*> \param[out] M
*> \verbatim
*> M is INTEGER
*> The number of columns in the arrays VL and/or VR actually
*> used to store the eigenvectors.
*> If HOWMNY = 'A' or 'B', M is set to N.
*> Each selected real eigenvector occupies one column and each
*> selected complex eigenvector occupies two columns.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of array WORK. LWORK >= max(1,3*N).
*> For optimum performance, LWORK >= N + 2*N*NB, where NB is
*> the optimal blocksize.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
* @precisions fortran d -> s
*
*> \ingroup doubleOTHERcomputational
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> The algorithm used in this program is basically backward (forward)
*> substitution, with scaling to make the the code robust against
*> possible overflow.
*>
*> Each eigenvector is normalized so that the element of largest
*> magnitude has magnitude 1; here the magnitude of a complex number
*> (x,y) is taken to be |x| + |y|.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE DTREVC3( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL,
$ VR, LDVR, MM, M, WORK, LWORK, INFO )
IMPLICIT NONE
*
* -- LAPACK computational routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
CHARACTER HOWMNY, SIDE
INTEGER INFO, LDT, LDVL, LDVR, LWORK, M, MM, N
* ..
* .. Array Arguments ..
LOGICAL SELECT( * )
DOUBLE PRECISION T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
$ WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
INTEGER NBMIN, NBMAX
PARAMETER ( NBMIN = 8, NBMAX = 128 )
* ..
* .. Local Scalars ..
LOGICAL ALLV, BOTHV, LEFTV, LQUERY, OVER, PAIR,
$ RIGHTV, SOMEV
INTEGER I, IERR, II, IP, IS, J, J1, J2, JNXT, K, KI,
$ IV, MAXWRK, NB, KI2
DOUBLE PRECISION BETA, BIGNUM, EMAX, OVFL, REC, REMAX, SCALE,
$ SMIN, SMLNUM, ULP, UNFL, VCRIT, VMAX, WI, WR,
$ XNORM
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER IDAMAX, ILAENV
DOUBLE PRECISION DDOT, DLAMCH
EXTERNAL LSAME, IDAMAX, ILAENV, DDOT, DLAMCH
* ..
* .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DGEMV, DLALN2, DSCAL, XERBLA,
$ DGEMM, DLASET, DLABAD
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, SQRT
* ..
* .. Local Arrays ..
DOUBLE PRECISION X( 2, 2 )
INTEGER ISCOMPLEX( NBMAX )
* ..
* .. Executable Statements ..
*
* Decode and test the input parameters
*
BOTHV = LSAME( SIDE, 'B' )
RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV
LEFTV = LSAME( SIDE, 'L' ) .OR. BOTHV
*
ALLV = LSAME( HOWMNY, 'A' )
OVER = LSAME( HOWMNY, 'B' )
SOMEV = LSAME( HOWMNY, 'S' )
*
INFO = 0
NB = ILAENV( 1, 'DTREVC', SIDE // HOWMNY, N, -1, -1, -1 )
MAXWRK = N + 2*N*NB
WORK(1) = MAXWRK
LQUERY = ( LWORK.EQ.-1 )
IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
INFO = -1
ELSE IF( .NOT.ALLV .AND. .NOT.OVER .AND. .NOT.SOMEV ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSE IF( LDVL.LT.1 .OR. ( LEFTV .AND. LDVL.LT.N ) ) THEN
INFO = -8
ELSE IF( LDVR.LT.1 .OR. ( RIGHTV .AND. LDVR.LT.N ) ) THEN
INFO = -10
ELSE IF( LWORK.LT.MAX( 1, 3*N ) .AND. .NOT.LQUERY ) THEN
INFO = -14
ELSE
*
* Set M to the number of columns required to store the selected
* eigenvectors, standardize the array SELECT if necessary, and
* test MM.
*
IF( SOMEV ) THEN
M = 0
PAIR = .FALSE.
DO 10 J = 1, N
IF( PAIR ) THEN
PAIR = .FALSE.
SELECT( J ) = .FALSE.
ELSE
IF( J.LT.N ) THEN
IF( T( J+1, J ).EQ.ZERO ) THEN
IF( SELECT( J ) )
$ M = M + 1
ELSE
PAIR = .TRUE.
IF( SELECT( J ) .OR. SELECT( J+1 ) ) THEN
SELECT( J ) = .TRUE.
M = M + 2
END IF
END IF
ELSE
IF( SELECT( N ) )
$ M = M + 1
END IF
END IF
10 CONTINUE
ELSE
M = N
END IF
*
IF( MM.LT.M ) THEN
INFO = -11
END IF
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DTREVC3', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible.
*
IF( N.EQ.0 )
$ RETURN
*
* Use blocked version of back-transformation if sufficient workspace.
* Zero-out the workspace to avoid potential NaN propagation.
*
IF( OVER .AND. LWORK .GE. N + 2*N*NBMIN ) THEN
NB = (LWORK - N) / (2*N)
NB = MIN( NB, NBMAX )
CALL DLASET( 'F', N, 1+2*NB, ZERO, ZERO, WORK, N )
ELSE
NB = 1
END IF
*
* Set the constants to control overflow.
*
UNFL = DLAMCH( 'Safe minimum' )
OVFL = ONE / UNFL
CALL DLABAD( UNFL, OVFL )
ULP = DLAMCH( 'Precision' )
SMLNUM = UNFL*( N / ULP )
BIGNUM = ( ONE-ULP ) / SMLNUM
*
* Compute 1-norm of each column of strictly upper triangular
* part of T to control overflow in triangular solver.
*
WORK( 1 ) = ZERO
DO 30 J = 2, N
WORK( J ) = ZERO
DO 20 I = 1, J - 1
WORK( J ) = WORK( J ) + ABS( T( I, J ) )
20 CONTINUE
30 CONTINUE
*
* Index IP is used to specify the real or complex eigenvalue:
* IP = 0, real eigenvalue,
* 1, first of conjugate complex pair: (wr,wi)
* -1, second of conjugate complex pair: (wr,wi)
* ISCOMPLEX array stores IP for each column in current block.
*
IF( RIGHTV ) THEN
*
* ============================================================
* Compute right eigenvectors.
*
* IV is index of column in current block.
* For complex right vector, uses IV-1 for real part and IV for complex part.
* Non-blocked version always uses IV=2;
* blocked version starts with IV=NB, goes down to 1 or 2.
* (Note the "0-th" column is used for 1-norms computed above.)
IV = 2
IF( NB.GT.2 ) THEN
IV = NB
END IF
IP = 0
IS = M
DO 140 KI = N, 1, -1
IF( IP.EQ.-1 ) THEN
* previous iteration (ki+1) was second of conjugate pair,
* so this ki is first of conjugate pair; skip to end of loop
IP = 1
GO TO 140
ELSE IF( KI.EQ.1 ) THEN
* last column, so this ki must be real eigenvalue
IP = 0
ELSE IF( T( KI, KI-1 ).EQ.ZERO ) THEN
* zero on sub-diagonal, so this ki is real eigenvalue
IP = 0
ELSE
* non-zero on sub-diagonal, so this ki is second of conjugate pair
IP = -1
END IF
IF( SOMEV ) THEN
IF( IP.EQ.0 ) THEN
IF( .NOT.SELECT( KI ) )
$ GO TO 140
ELSE
IF( .NOT.SELECT( KI-1 ) )
$ GO TO 140
END IF
END IF
*
* Compute the KI-th eigenvalue (WR,WI).
*
WR = T( KI, KI )
WI = ZERO
IF( IP.NE.0 )
$ WI = SQRT( ABS( T( KI, KI-1 ) ) )*
$ SQRT( ABS( T( KI-1, KI ) ) )
SMIN = MAX( ULP*( ABS( WR )+ABS( WI ) ), SMLNUM )
*
IF( IP.EQ.0 ) THEN
*
* --------------------------------------------------------
* Real right eigenvector
*
WORK( KI + IV*N ) = ONE
*
* Form right-hand side.
*
DO 50 K = 1, KI - 1
WORK( K + IV*N ) = -T( K, KI )
50 CONTINUE
*
* Solve upper quasi-triangular system:
* [ T(1:KI-1,1:KI-1) - WR ]*X = SCALE*WORK.
*
JNXT = KI - 1
DO 60 J = KI - 1, 1, -1
IF( J.GT.JNXT )
$ GO TO 60
J1 = J
J2 = J
JNXT = J - 1
IF( J.GT.1 ) THEN
IF( T( J, J-1 ).NE.ZERO ) THEN
J1 = J - 1
JNXT = J - 2
END IF
END IF
*
IF( J1.EQ.J2 ) THEN
*
* 1-by-1 diagonal block
*
CALL DLALN2( .FALSE., 1, 1, SMIN, ONE, T( J, J ),
$ LDT, ONE, ONE, WORK( J+IV*N ), N, WR,
$ ZERO, X, 2, SCALE, XNORM, IERR )
*
* Scale X(1,1) to avoid overflow when updating
* the right-hand side.
*
IF( XNORM.GT.ONE ) THEN
IF( WORK( J ).GT.BIGNUM / XNORM ) THEN
X( 1, 1 ) = X( 1, 1 ) / XNORM
SCALE = SCALE / XNORM
END IF
END IF
*
* Scale if necessary
*
IF( SCALE.NE.ONE )
$ CALL DSCAL( KI, SCALE, WORK( 1+IV*N ), 1 )
WORK( J+IV*N ) = X( 1, 1 )
*
* Update right-hand side
*
CALL DAXPY( J-1, -X( 1, 1 ), T( 1, J ), 1,
$ WORK( 1+IV*N ), 1 )
*
ELSE
*
* 2-by-2 diagonal block
*
CALL DLALN2( .FALSE., 2, 1, SMIN, ONE,
$ T( J-1, J-1 ), LDT, ONE, ONE,
$ WORK( J-1+IV*N ), N, WR, ZERO, X, 2,
$ SCALE, XNORM, IERR )
*
* Scale X(1,1) and X(2,1) to avoid overflow when
* updating the right-hand side.
*
IF( XNORM.GT.ONE ) THEN
BETA = MAX( WORK( J-1 ), WORK( J ) )
IF( BETA.GT.BIGNUM / XNORM ) THEN
X( 1, 1 ) = X( 1, 1 ) / XNORM
X( 2, 1 ) = X( 2, 1 ) / XNORM
SCALE = SCALE / XNORM
END IF
END IF
*
* Scale if necessary
*
IF( SCALE.NE.ONE )
$ CALL DSCAL( KI, SCALE, WORK( 1+IV*N ), 1 )
WORK( J-1+IV*N ) = X( 1, 1 )
WORK( J +IV*N ) = X( 2, 1 )
*
* Update right-hand side
*
CALL DAXPY( J-2, -X( 1, 1 ), T( 1, J-1 ), 1,
$ WORK( 1+IV*N ), 1 )
CALL DAXPY( J-2, -X( 2, 1 ), T( 1, J ), 1,
$ WORK( 1+IV*N ), 1 )
END IF
60 CONTINUE
*
* Copy the vector x or Q*x to VR and normalize.
*
IF( .NOT.OVER ) THEN
* ------------------------------
* no back-transform: copy x to VR and normalize.
CALL DCOPY( KI, WORK( 1 + IV*N ), 1, VR( 1, IS ), 1 )
*
II = IDAMAX( KI, VR( 1, IS ), 1 )
REMAX = ONE / ABS( VR( II, IS ) )
CALL DSCAL( KI, REMAX, VR( 1, IS ), 1 )
*
DO 70 K = KI + 1, N
VR( K, IS ) = ZERO
70 CONTINUE
*
ELSE IF( NB.EQ.1 ) THEN
* ------------------------------
* version 1: back-transform each vector with GEMV, Q*x.
IF( KI.GT.1 )
$ CALL DGEMV( 'N', N, KI-1, ONE, VR, LDVR,
$ WORK( 1 + IV*N ), 1, WORK( KI + IV*N ),
$ VR( 1, KI ), 1 )
*
II = IDAMAX( N, VR( 1, KI ), 1 )
REMAX = ONE / ABS( VR( II, KI ) )
CALL DSCAL( N, REMAX, VR( 1, KI ), 1 )
*
ELSE
* ------------------------------
* version 2: back-transform block of vectors with GEMM
* zero out below vector
DO K = KI + 1, N
WORK( K + IV*N ) = ZERO
END DO
ISCOMPLEX( IV ) = IP
* back-transform and normalization is done below
END IF
ELSE
*
* --------------------------------------------------------
* Complex right eigenvector.
*
* Initial solve
* [ ( T(KI-1,KI-1) T(KI-1,KI) ) - (WR + I*WI) ]*X = 0.
* [ ( T(KI, KI-1) T(KI, KI) ) ]
*
IF( ABS( T( KI-1, KI ) ).GE.ABS( T( KI, KI-1 ) ) ) THEN
WORK( KI-1 + (IV-1)*N ) = ONE
WORK( KI + (IV )*N ) = WI / T( KI-1, KI )
ELSE
WORK( KI-1 + (IV-1)*N ) = -WI / T( KI, KI-1 )
WORK( KI + (IV )*N ) = ONE
END IF
WORK( KI + (IV-1)*N ) = ZERO
WORK( KI-1 + (IV )*N ) = ZERO
*
* Form right-hand side.
*
DO 80 K = 1, KI - 2
WORK( K+(IV-1)*N ) = -WORK( KI-1+(IV-1)*N )*T(K,KI-1)
WORK( K+(IV )*N ) = -WORK( KI +(IV )*N )*T(K,KI )
80 CONTINUE
*
* Solve upper quasi-triangular system:
* [ T(1:KI-2,1:KI-2) - (WR+i*WI) ]*X = SCALE*(WORK+i*WORK2)
*
JNXT = KI - 2
DO 90 J = KI - 2, 1, -1
IF( J.GT.JNXT )
$ GO TO 90
J1 = J
J2 = J
JNXT = J - 1
IF( J.GT.1 ) THEN
IF( T( J, J-1 ).NE.ZERO ) THEN
J1 = J - 1
JNXT = J - 2
END IF
END IF
*
IF( J1.EQ.J2 ) THEN
*
* 1-by-1 diagonal block
*
CALL DLALN2( .FALSE., 1, 2, SMIN, ONE, T( J, J ),
$ LDT, ONE, ONE, WORK( J+(IV-1)*N ), N,
$ WR, WI, X, 2, SCALE, XNORM, IERR )
*
* Scale X(1,1) and X(1,2) to avoid overflow when
* updating the right-hand side.
*
IF( XNORM.GT.ONE ) THEN
IF( WORK( J ).GT.BIGNUM / XNORM ) THEN
X( 1, 1 ) = X( 1, 1 ) / XNORM
X( 1, 2 ) = X( 1, 2 ) / XNORM
SCALE = SCALE / XNORM
END IF
END IF
*
* Scale if necessary
*
IF( SCALE.NE.ONE ) THEN
CALL DSCAL( KI, SCALE, WORK( 1+(IV-1)*N ), 1 )
CALL DSCAL( KI, SCALE, WORK( 1+(IV )*N ), 1 )
END IF
WORK( J+(IV-1)*N ) = X( 1, 1 )
WORK( J+(IV )*N ) = X( 1, 2 )
*
* Update the right-hand side
*
CALL DAXPY( J-1, -X( 1, 1 ), T( 1, J ), 1,
$ WORK( 1+(IV-1)*N ), 1 )
CALL DAXPY( J-1, -X( 1, 2 ), T( 1, J ), 1,
$ WORK( 1+(IV )*N ), 1 )
*
ELSE
*
* 2-by-2 diagonal block
*
CALL DLALN2( .FALSE., 2, 2, SMIN, ONE,
$ T( J-1, J-1 ), LDT, ONE, ONE,
$ WORK( J-1+(IV-1)*N ), N, WR, WI, X, 2,
$ SCALE, XNORM, IERR )
*
* Scale X to avoid overflow when updating
* the right-hand side.
*
IF( XNORM.GT.ONE ) THEN
BETA = MAX( WORK( J-1 ), WORK( J ) )
IF( BETA.GT.BIGNUM / XNORM ) THEN
REC = ONE / XNORM
X( 1, 1 ) = X( 1, 1 )*REC
X( 1, 2 ) = X( 1, 2 )*REC
X( 2, 1 ) = X( 2, 1 )*REC
X( 2, 2 ) = X( 2, 2 )*REC
SCALE = SCALE*REC
END IF
END IF
*
* Scale if necessary
*
IF( SCALE.NE.ONE ) THEN
CALL DSCAL( KI, SCALE, WORK( 1+(IV-1)*N ), 1 )
CALL DSCAL( KI, SCALE, WORK( 1+(IV )*N ), 1 )
END IF
WORK( J-1+(IV-1)*N ) = X( 1, 1 )
WORK( J +(IV-1)*N ) = X( 2, 1 )
WORK( J-1+(IV )*N ) = X( 1, 2 )
WORK( J +(IV )*N ) = X( 2, 2 )
*
* Update the right-hand side
*
CALL DAXPY( J-2, -X( 1, 1 ), T( 1, J-1 ), 1,
$ WORK( 1+(IV-1)*N ), 1 )
CALL DAXPY( J-2, -X( 2, 1 ), T( 1, J ), 1,
$ WORK( 1+(IV-1)*N ), 1 )
CALL DAXPY( J-2, -X( 1, 2 ), T( 1, J-1 ), 1,
$ WORK( 1+(IV )*N ), 1 )
CALL DAXPY( J-2, -X( 2, 2 ), T( 1, J ), 1,
$ WORK( 1+(IV )*N ), 1 )
END IF
90 CONTINUE
*
* Copy the vector x or Q*x to VR and normalize.
*
IF( .NOT.OVER ) THEN
* ------------------------------
* no back-transform: copy x to VR and normalize.
CALL DCOPY( KI, WORK( 1+(IV-1)*N ), 1, VR(1,IS-1), 1 )
CALL DCOPY( KI, WORK( 1+(IV )*N ), 1, VR(1,IS ), 1 )
*
EMAX = ZERO
DO 100 K = 1, KI
EMAX = MAX( EMAX, ABS( VR( K, IS-1 ) )+
$ ABS( VR( K, IS ) ) )
100 CONTINUE
REMAX = ONE / EMAX
CALL DSCAL( KI, REMAX, VR( 1, IS-1 ), 1 )
CALL DSCAL( KI, REMAX, VR( 1, IS ), 1 )
*
DO 110 K = KI + 1, N
VR( K, IS-1 ) = ZERO
VR( K, IS ) = ZERO
110 CONTINUE
*
ELSE IF( NB.EQ.1 ) THEN
* ------------------------------
* version 1: back-transform each vector with GEMV, Q*x.
IF( KI.GT.2 ) THEN
CALL DGEMV( 'N', N, KI-2, ONE, VR, LDVR,
$ WORK( 1 + (IV-1)*N ), 1,
$ WORK( KI-1 + (IV-1)*N ), VR(1,KI-1), 1)
CALL DGEMV( 'N', N, KI-2, ONE, VR, LDVR,
$ WORK( 1 + (IV)*N ), 1,
$ WORK( KI + (IV)*N ), VR( 1, KI ), 1 )
ELSE
CALL DSCAL( N, WORK(KI-1+(IV-1)*N), VR(1,KI-1), 1)
CALL DSCAL( N, WORK(KI +(IV )*N), VR(1,KI ), 1)
END IF
*
EMAX = ZERO
DO 120 K = 1, N
EMAX = MAX( EMAX, ABS( VR( K, KI-1 ) )+
$ ABS( VR( K, KI ) ) )
120 CONTINUE
REMAX = ONE / EMAX
CALL DSCAL( N, REMAX, VR( 1, KI-1 ), 1 )
CALL DSCAL( N, REMAX, VR( 1, KI ), 1 )
*
ELSE
* ------------------------------
* version 2: back-transform block of vectors with GEMM
* zero out below vector
DO K = KI + 1, N
WORK( K + (IV-1)*N ) = ZERO
WORK( K + (IV )*N ) = ZERO
END DO
ISCOMPLEX( IV-1 ) = -IP
ISCOMPLEX( IV ) = IP
IV = IV - 1
* back-transform and normalization is done below
END IF
END IF
IF( NB.GT.1 ) THEN
* --------------------------------------------------------
* Blocked version of back-transform
* For complex case, KI2 includes both vectors (KI-1 and KI)
IF( IP.EQ.0 ) THEN
KI2 = KI
ELSE
KI2 = KI - 1
END IF
* Columns IV:NB of work are valid vectors.
* When the number of vectors stored reaches NB-1 or NB,
* or if this was last vector, do the GEMM
IF( (IV.LE.2) .OR. (KI2.EQ.1) ) THEN
CALL DGEMM( 'N', 'N', N, NB-IV+1, KI2+NB-IV, ONE,
$ VR, LDVR,
$ WORK( 1 + (IV)*N ), N,
$ ZERO,
$ WORK( 1 + (NB+IV)*N ), N )
* normalize vectors
DO K = IV, NB
IF( ISCOMPLEX(K).EQ.0 ) THEN
* real eigenvector
II = IDAMAX( N, WORK( 1 + (NB+K)*N ), 1 )
REMAX = ONE / ABS( WORK( II + (NB+K)*N ) )
ELSE IF( ISCOMPLEX(K).EQ.1 ) THEN
* first eigenvector of conjugate pair
EMAX = ZERO
DO II = 1, N
EMAX = MAX( EMAX,
$ ABS( WORK( II + (NB+K )*N ) )+
$ ABS( WORK( II + (NB+K+1)*N ) ) )
END DO
REMAX = ONE / EMAX
* else if ISCOMPLEX(K).EQ.-1
* second eigenvector of conjugate pair
* reuse same REMAX as previous K
END IF
CALL DSCAL( N, REMAX, WORK( 1 + (NB+K)*N ), 1 )
END DO
CALL DLACPY( 'F', N, NB-IV+1,
$ WORK( 1 + (NB+IV)*N ), N,
$ VR( 1, KI2 ), LDVR )
IV = NB
ELSE
IV = IV - 1
END IF
END IF ! blocked back-transform
*
IS = IS - 1
IF( IP.NE.0 )
$ IS = IS - 1
140 CONTINUE
END IF
IF( LEFTV ) THEN
*
* ============================================================
* Compute left eigenvectors.
*
* IV is index of column in current block.
* For complex left vector, uses IV for real part and IV+1 for complex part.
* Non-blocked version always uses IV=1;
* blocked version starts with IV=1, goes up to NB-1 or NB.
* (Note the "0-th" column is used for 1-norms computed above.)
IV = 1
IP = 0
IS = 1
DO 260 KI = 1, N
IF( IP.EQ.1 ) THEN
* previous iteration (ki-1) was first of conjugate pair,
* so this ki is second of conjugate pair; skip to end of loop
IP = -1
GO TO 260
ELSE IF( KI.EQ.N ) THEN
* last column, so this ki must be real eigenvalue
IP = 0
ELSE IF( T( KI+1, KI ).EQ.ZERO ) THEN
* zero on sub-diagonal, so this ki is real eigenvalue
IP = 0
ELSE
* non-zero on sub-diagonal, so this ki is first of conjugate pair
IP = 1
END IF
*
IF( SOMEV ) THEN
IF( .NOT.SELECT( KI ) )
$ GO TO 260
END IF
*
* Compute the KI-th eigenvalue (WR,WI).
*
WR = T( KI, KI )
WI = ZERO
IF( IP.NE.0 )
$ WI = SQRT( ABS( T( KI, KI+1 ) ) )*
$ SQRT( ABS( T( KI+1, KI ) ) )
SMIN = MAX( ULP*( ABS( WR )+ABS( WI ) ), SMLNUM )
*
IF( IP.EQ.0 ) THEN
*
* --------------------------------------------------------
* Real left eigenvector
*
WORK( KI + IV*N ) = ONE
*
* Form right-hand side.
*
DO 160 K = KI + 1, N
WORK( K + IV*N ) = -T( KI, K )
160 CONTINUE
*
* Solve transposed quasi-triangular system:
* [ T(KI+1:N,KI+1:N) - WR ]**T * X = SCALE*WORK
*
VMAX = ONE
VCRIT = BIGNUM
*
JNXT = KI + 1
DO 170 J = KI + 1, N
IF( J.LT.JNXT )
$ GO TO 170
J1 = J
J2 = J
JNXT = J + 1
IF( J.LT.N ) THEN
IF( T( J+1, J ).NE.ZERO ) THEN
J2 = J + 1
JNXT = J + 2
END IF
END IF
*
IF( J1.EQ.J2 ) THEN
*
* 1-by-1 diagonal block
*
* Scale if necessary to avoid overflow when forming
* the right-hand side.
*
IF( WORK( J ).GT.VCRIT ) THEN
REC = ONE / VMAX
CALL DSCAL( N-KI+1, REC, WORK( KI+IV*N ), 1 )
VMAX = ONE
VCRIT = BIGNUM
END IF
*
WORK( J+IV*N ) = WORK( J+IV*N ) -
$ DDOT( J-KI-1, T( KI+1, J ), 1,
$ WORK( KI+1+IV*N ), 1 )
*
* Solve [ T(J,J) - WR ]**T * X = WORK
*
CALL DLALN2( .FALSE., 1, 1, SMIN, ONE, T( J, J ),
$ LDT, ONE, ONE, WORK( J+IV*N ), N, WR,
$ ZERO, X, 2, SCALE, XNORM, IERR )
*
* Scale if necessary
*
IF( SCALE.NE.ONE )
$ CALL DSCAL( N-KI+1, SCALE, WORK( KI+IV*N ), 1 )
WORK( J+IV*N ) = X( 1, 1 )
VMAX = MAX( ABS( WORK( J+IV*N ) ), VMAX )
VCRIT = BIGNUM / VMAX
*
ELSE
*
* 2-by-2 diagonal block
*
* Scale if necessary to avoid overflow when forming
* the right-hand side.
*
BETA = MAX( WORK( J ), WORK( J+1 ) )
IF( BETA.GT.VCRIT ) THEN
REC = ONE / VMAX
CALL DSCAL( N-KI+1, REC, WORK( KI+IV*N ), 1 )
VMAX = ONE
VCRIT = BIGNUM
END IF
*
WORK( J+IV*N ) = WORK( J+IV*N ) -
$ DDOT( J-KI-1, T( KI+1, J ), 1,
$ WORK( KI+1+IV*N ), 1 )
*
WORK( J+1+IV*N ) = WORK( J+1+IV*N ) -
$ DDOT( J-KI-1, T( KI+1, J+1 ), 1,
$ WORK( KI+1+IV*N ), 1 )
*
* Solve
* [ T(J,J)-WR T(J,J+1) ]**T * X = SCALE*( WORK1 )
* [ T(J+1,J) T(J+1,J+1)-WR ] ( WORK2 )
*
CALL DLALN2( .TRUE., 2, 1, SMIN, ONE, T( J, J ),
$ LDT, ONE, ONE, WORK( J+IV*N ), N, WR,
$ ZERO, X, 2, SCALE, XNORM, IERR )
*
* Scale if necessary
*
IF( SCALE.NE.ONE )
$ CALL DSCAL( N-KI+1, SCALE, WORK( KI+IV*N ), 1 )
WORK( J +IV*N ) = X( 1, 1 )
WORK( J+1+IV*N ) = X( 2, 1 )
*
VMAX = MAX( ABS( WORK( J +IV*N ) ),
$ ABS( WORK( J+1+IV*N ) ), VMAX )
VCRIT = BIGNUM / VMAX
*
END IF
170 CONTINUE
*
* Copy the vector x or Q*x to VL and normalize.
*
IF( .NOT.OVER ) THEN
* ------------------------------
* no back-transform: copy x to VL and normalize.
CALL DCOPY( N-KI+1, WORK( KI + IV*N ), 1,
$ VL( KI, IS ), 1 )
*
II = IDAMAX( N-KI+1, VL( KI, IS ), 1 ) + KI - 1
REMAX = ONE / ABS( VL( II, IS ) )
CALL DSCAL( N-KI+1, REMAX, VL( KI, IS ), 1 )
*
DO 180 K = 1, KI - 1
VL( K, IS ) = ZERO
180 CONTINUE
*
ELSE IF( NB.EQ.1 ) THEN
* ------------------------------
* version 1: back-transform each vector with GEMV, Q*x.
IF( KI.LT.N )
$ CALL DGEMV( 'N', N, N-KI, ONE,
$ VL( 1, KI+1 ), LDVL,
$ WORK( KI+1 + IV*N ), 1,
$ WORK( KI + IV*N ), VL( 1, KI ), 1 )
*
II = IDAMAX( N, VL( 1, KI ), 1 )
REMAX = ONE / ABS( VL( II, KI ) )
CALL DSCAL( N, REMAX, VL( 1, KI ), 1 )
*
ELSE
* ------------------------------
* version 2: back-transform block of vectors with GEMM
* zero out above vector
* could go from KI-NV+1 to KI-1
DO K = 1, KI - 1
WORK( K + IV*N ) = ZERO
END DO
ISCOMPLEX( IV ) = IP
* back-transform and normalization is done below
END IF
ELSE
*
* --------------------------------------------------------
* Complex left eigenvector.
*
* Initial solve:
* [ ( T(KI,KI) T(KI,KI+1) )**T - (WR - I* WI) ]*X = 0.
* [ ( T(KI+1,KI) T(KI+1,KI+1) ) ]
*
IF( ABS( T( KI, KI+1 ) ).GE.ABS( T( KI+1, KI ) ) ) THEN
WORK( KI + (IV )*N ) = WI / T( KI, KI+1 )
WORK( KI+1 + (IV+1)*N ) = ONE
ELSE
WORK( KI + (IV )*N ) = ONE
WORK( KI+1 + (IV+1)*N ) = -WI / T( KI+1, KI )
END IF
WORK( KI+1 + (IV )*N ) = ZERO
WORK( KI + (IV+1)*N ) = ZERO
*
* Form right-hand side.
*
DO 190 K = KI + 2, N
WORK( K+(IV )*N ) = -WORK( KI +(IV )*N )*T(KI, K)
WORK( K+(IV+1)*N ) = -WORK( KI+1+(IV+1)*N )*T(KI+1,K)
190 CONTINUE
*
* Solve transposed quasi-triangular system:
* [ T(KI+2:N,KI+2:N)**T - (WR-i*WI) ]*X = WORK1+i*WORK2
*
VMAX = ONE
VCRIT = BIGNUM
*
JNXT = KI + 2
DO 200 J = KI + 2, N
IF( J.LT.JNXT )
$ GO TO 200
J1 = J
J2 = J
JNXT = J + 1
IF( J.LT.N ) THEN
IF( T( J+1, J ).NE.ZERO ) THEN
J2 = J + 1
JNXT = J + 2
END IF
END IF
*
IF( J1.EQ.J2 ) THEN
*
* 1-by-1 diagonal block
*
* Scale if necessary to avoid overflow when
* forming the right-hand side elements.
*
IF( WORK( J ).GT.VCRIT ) THEN
REC = ONE / VMAX
CALL DSCAL( N-KI+1, REC, WORK(KI+(IV )*N), 1 )
CALL DSCAL( N-KI+1, REC, WORK(KI+(IV+1)*N), 1 )
VMAX = ONE
VCRIT = BIGNUM
END IF
*
WORK( J+(IV )*N ) = WORK( J+(IV)*N ) -
$ DDOT( J-KI-2, T( KI+2, J ), 1,
$ WORK( KI+2+(IV)*N ), 1 )
WORK( J+(IV+1)*N ) = WORK( J+(IV+1)*N ) -
$ DDOT( J-KI-2, T( KI+2, J ), 1,
$ WORK( KI+2+(IV+1)*N ), 1 )
*
* Solve [ T(J,J)-(WR-i*WI) ]*(X11+i*X12)= WK+I*WK2
*
CALL DLALN2( .FALSE., 1, 2, SMIN, ONE, T( J, J ),
$ LDT, ONE, ONE, WORK( J+IV*N ), N, WR,
$ -WI, X, 2, SCALE, XNORM, IERR )
*
* Scale if necessary
*
IF( SCALE.NE.ONE ) THEN
CALL DSCAL( N-KI+1, SCALE, WORK(KI+(IV )*N), 1)
CALL DSCAL( N-KI+1, SCALE, WORK(KI+(IV+1)*N), 1)
END IF
WORK( J+(IV )*N ) = X( 1, 1 )
WORK( J+(IV+1)*N ) = X( 1, 2 )
VMAX = MAX( ABS( WORK( J+(IV )*N ) ),
$ ABS( WORK( J+(IV+1)*N ) ), VMAX )
VCRIT = BIGNUM / VMAX
*
ELSE
*
* 2-by-2 diagonal block
*
* Scale if necessary to avoid overflow when forming
* the right-hand side elements.
*
BETA = MAX( WORK( J ), WORK( J+1 ) )
IF( BETA.GT.VCRIT ) THEN
REC = ONE / VMAX
CALL DSCAL( N-KI+1, REC, WORK(KI+(IV )*N), 1 )
CALL DSCAL( N-KI+1, REC, WORK(KI+(IV+1)*N), 1 )
VMAX = ONE
VCRIT = BIGNUM
END IF
*
WORK( J +(IV )*N ) = WORK( J+(IV)*N ) -
$ DDOT( J-KI-2, T( KI+2, J ), 1,
$ WORK( KI+2+(IV)*N ), 1 )
*
WORK( J +(IV+1)*N ) = WORK( J+(IV+1)*N ) -
$ DDOT( J-KI-2, T( KI+2, J ), 1,
$ WORK( KI+2+(IV+1)*N ), 1 )
*
WORK( J+1+(IV )*N ) = WORK( J+1+(IV)*N ) -
$ DDOT( J-KI-2, T( KI+2, J+1 ), 1,
$ WORK( KI+2+(IV)*N ), 1 )
*
WORK( J+1+(IV+1)*N ) = WORK( J+1+(IV+1)*N ) -
$ DDOT( J-KI-2, T( KI+2, J+1 ), 1,
$ WORK( KI+2+(IV+1)*N ), 1 )
*
* Solve 2-by-2 complex linear equation
* [ (T(j,j) T(j,j+1) )**T - (wr-i*wi)*I ]*X = SCALE*B
* [ (T(j+1,j) T(j+1,j+1)) ]
*
CALL DLALN2( .TRUE., 2, 2, SMIN, ONE, T( J, J ),
$ LDT, ONE, ONE, WORK( J+IV*N ), N, WR,
$ -WI, X, 2, SCALE, XNORM, IERR )
*
* Scale if necessary
*
IF( SCALE.NE.ONE ) THEN
CALL DSCAL( N-KI+1, SCALE, WORK(KI+(IV )*N), 1)
CALL DSCAL( N-KI+1, SCALE, WORK(KI+(IV+1)*N), 1)
END IF
WORK( J +(IV )*N ) = X( 1, 1 )
WORK( J +(IV+1)*N ) = X( 1, 2 )
WORK( J+1+(IV )*N ) = X( 2, 1 )
WORK( J+1+(IV+1)*N ) = X( 2, 2 )
VMAX = MAX( ABS( X( 1, 1 ) ), ABS( X( 1, 2 ) ),
$ ABS( X( 2, 1 ) ), ABS( X( 2, 2 ) ),
$ VMAX )
VCRIT = BIGNUM / VMAX
*
END IF
200 CONTINUE
*
* Copy the vector x or Q*x to VL and normalize.
*
IF( .NOT.OVER ) THEN
* ------------------------------
* no back-transform: copy x to VL and normalize.
CALL DCOPY( N-KI+1, WORK( KI + (IV )*N ), 1,
$ VL( KI, IS ), 1 )
CALL DCOPY( N-KI+1, WORK( KI + (IV+1)*N ), 1,
$ VL( KI, IS+1 ), 1 )
*
EMAX = ZERO
DO 220 K = KI, N
EMAX = MAX( EMAX, ABS( VL( K, IS ) )+
$ ABS( VL( K, IS+1 ) ) )
220 CONTINUE
REMAX = ONE / EMAX
CALL DSCAL( N-KI+1, REMAX, VL( KI, IS ), 1 )
CALL DSCAL( N-KI+1, REMAX, VL( KI, IS+1 ), 1 )
*
DO 230 K = 1, KI - 1
VL( K, IS ) = ZERO
VL( K, IS+1 ) = ZERO
230 CONTINUE
*
ELSE IF( NB.EQ.1 ) THEN
* ------------------------------
* version 1: back-transform each vector with GEMV, Q*x.
IF( KI.LT.N-1 ) THEN
CALL DGEMV( 'N', N, N-KI-1, ONE,
$ VL( 1, KI+2 ), LDVL,
$ WORK( KI+2 + (IV)*N ), 1,
$ WORK( KI + (IV)*N ),
$ VL( 1, KI ), 1 )
CALL DGEMV( 'N', N, N-KI-1, ONE,
$ VL( 1, KI+2 ), LDVL,
$ WORK( KI+2 + (IV+1)*N ), 1,
$ WORK( KI+1 + (IV+1)*N ),
$ VL( 1, KI+1 ), 1 )
ELSE
CALL DSCAL( N, WORK(KI+ (IV )*N), VL(1, KI ), 1)
CALL DSCAL( N, WORK(KI+1+(IV+1)*N), VL(1, KI+1), 1)
END IF
*
EMAX = ZERO
DO 240 K = 1, N
EMAX = MAX( EMAX, ABS( VL( K, KI ) )+
$ ABS( VL( K, KI+1 ) ) )
240 CONTINUE
REMAX = ONE / EMAX
CALL DSCAL( N, REMAX, VL( 1, KI ), 1 )
CALL DSCAL( N, REMAX, VL( 1, KI+1 ), 1 )
*
ELSE
* ------------------------------
* version 2: back-transform block of vectors with GEMM
* zero out above vector
* could go from KI-NV+1 to KI-1
DO K = 1, KI - 1
WORK( K + (IV )*N ) = ZERO
WORK( K + (IV+1)*N ) = ZERO
END DO
ISCOMPLEX( IV ) = IP
ISCOMPLEX( IV+1 ) = -IP
IV = IV + 1
* back-transform and normalization is done below
END IF
END IF
IF( NB.GT.1 ) THEN
* --------------------------------------------------------
* Blocked version of back-transform
* For complex case, KI2 includes both vectors (KI and KI+1)
IF( IP.EQ.0 ) THEN
KI2 = KI
ELSE
KI2 = KI + 1
END IF
* Columns 1:IV of work are valid vectors.
* When the number of vectors stored reaches NB-1 or NB,
* or if this was last vector, do the GEMM
IF( (IV.GE.NB-1) .OR. (KI2.EQ.N) ) THEN
CALL DGEMM( 'N', 'N', N, IV, N-KI2+IV, ONE,
$ VL( 1, KI2-IV+1 ), LDVL,
$ WORK( KI2-IV+1 + (1)*N ), N,
$ ZERO,
$ WORK( 1 + (NB+1)*N ), N )
* normalize vectors
DO K = 1, IV
IF( ISCOMPLEX(K).EQ.0) THEN
* real eigenvector
II = IDAMAX( N, WORK( 1 + (NB+K)*N ), 1 )
REMAX = ONE / ABS( WORK( II + (NB+K)*N ) )
ELSE IF( ISCOMPLEX(K).EQ.1) THEN
* first eigenvector of conjugate pair
EMAX = ZERO
DO II = 1, N
EMAX = MAX( EMAX,
$ ABS( WORK( II + (NB+K )*N ) )+
$ ABS( WORK( II + (NB+K+1)*N ) ) )
END DO
REMAX = ONE / EMAX
* else if ISCOMPLEX(K).EQ.-1
* second eigenvector of conjugate pair
* reuse same REMAX as previous K
END IF
CALL DSCAL( N, REMAX, WORK( 1 + (NB+K)*N ), 1 )
END DO
CALL DLACPY( 'F', N, IV,
$ WORK( 1 + (NB+1)*N ), N,
$ VL( 1, KI2-IV+1 ), LDVL )
IV = 1
ELSE
IV = IV + 1
END IF
END IF ! blocked back-transform
*
IS = IS + 1
IF( IP.NE.0 )
$ IS = IS + 1
260 CONTINUE
END IF
*
RETURN
*
* End of DTREVC3
*
END
|