1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
|
*> \brief \b DTPTRI
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> Download DTPTRI + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtptri.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtptri.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtptri.f">
*> [TXT]</a>
*
* Definition
* ==========
*
* SUBROUTINE DTPTRI( UPLO, DIAG, N, AP, INFO )
*
* .. Scalar Arguments ..
* CHARACTER DIAG, UPLO
* INTEGER INFO, N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION AP( * )
* ..
*
* Purpose
* =======
*
*>\details \b Purpose:
*>\verbatim
*>
*> DTPTRI computes the inverse of a real upper or lower triangular
*> matrix A stored in packed format.
*>
*>\endverbatim
*
* Arguments
* =========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': A is upper triangular;
*> = 'L': A is lower triangular.
*> \endverbatim
*>
*> \param[in] DIAG
*> \verbatim
*> DIAG is CHARACTER*1
*> = 'N': A is non-unit triangular;
*> = 'U': A is unit triangular.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] AP
*> \verbatim
*> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
*> On entry, the upper or lower triangular matrix A, stored
*> columnwise in a linear array. The j-th column of A is stored
*> in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n.
*> See below for further details.
*> On exit, the (triangular) inverse of the original matrix, in
*> the same packed storage format.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> > 0: if INFO = i, A(i,i) is exactly zero. The triangular
*> matrix is singular and its inverse can not be computed.
*> \endverbatim
*>
*
* Authors
* =======
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup doubleOTHERcomputational
*
*
* Further Details
* ===============
*>\details \b Further \b Details
*> \verbatim
*>
*> A triangular matrix A can be transferred to packed storage using one
*> of the following program segments:
*>
*> UPLO = 'U': UPLO = 'L':
*>
*> JC = 1 JC = 1
*> DO 2 J = 1, N DO 2 J = 1, N
*> DO 1 I = 1, J DO 1 I = J, N
*> AP(JC+I-1) = A(I,J) AP(JC+I-J) = A(I,J)
*> 1 CONTINUE 1 CONTINUE
*> JC = JC + J JC = JC + N - J + 1
*> 2 CONTINUE 2 CONTINUE
*>
*> \endverbatim
*>
* =====================================================================
SUBROUTINE DTPTRI( UPLO, DIAG, N, AP, INFO )
*
* -- LAPACK computational routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER DIAG, UPLO
INTEGER INFO, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION AP( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL NOUNIT, UPPER
INTEGER J, JC, JCLAST, JJ
DOUBLE PRECISION AJJ
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL DSCAL, DTPMV, XERBLA
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
NOUNIT = LSAME( DIAG, 'N' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DTPTRI', -INFO )
RETURN
END IF
*
* Check for singularity if non-unit.
*
IF( NOUNIT ) THEN
IF( UPPER ) THEN
JJ = 0
DO 10 INFO = 1, N
JJ = JJ + INFO
IF( AP( JJ ).EQ.ZERO )
$ RETURN
10 CONTINUE
ELSE
JJ = 1
DO 20 INFO = 1, N
IF( AP( JJ ).EQ.ZERO )
$ RETURN
JJ = JJ + N - INFO + 1
20 CONTINUE
END IF
INFO = 0
END IF
*
IF( UPPER ) THEN
*
* Compute inverse of upper triangular matrix.
*
JC = 1
DO 30 J = 1, N
IF( NOUNIT ) THEN
AP( JC+J-1 ) = ONE / AP( JC+J-1 )
AJJ = -AP( JC+J-1 )
ELSE
AJJ = -ONE
END IF
*
* Compute elements 1:j-1 of j-th column.
*
CALL DTPMV( 'Upper', 'No transpose', DIAG, J-1, AP,
$ AP( JC ), 1 )
CALL DSCAL( J-1, AJJ, AP( JC ), 1 )
JC = JC + J
30 CONTINUE
*
ELSE
*
* Compute inverse of lower triangular matrix.
*
JC = N*( N+1 ) / 2
DO 40 J = N, 1, -1
IF( NOUNIT ) THEN
AP( JC ) = ONE / AP( JC )
AJJ = -AP( JC )
ELSE
AJJ = -ONE
END IF
IF( J.LT.N ) THEN
*
* Compute elements j+1:n of j-th column.
*
CALL DTPMV( 'Lower', 'No transpose', DIAG, N-J,
$ AP( JCLAST ), AP( JC+1 ), 1 )
CALL DSCAL( N-J, AJJ, AP( JC+1 ), 1 )
END IF
JCLAST = JC
JC = JC - N + J - 2
40 CONTINUE
END IF
*
RETURN
*
* End of DTPTRI
*
END
|