summaryrefslogtreecommitdiff
path: root/SRC/dstevx.f
blob: b00e0b39250c900bcc5f336f98ae1a5d2dda15dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
*> \brief <b> DSTEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download DSTEVX + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dstevx.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dstevx.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dstevx.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition
*  ==========
*
*       SUBROUTINE DSTEVX( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
*                          M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO )
* 
*       .. Scalar Arguments ..
*       CHARACTER          JOBZ, RANGE
*       INTEGER            IL, INFO, IU, LDZ, M, N
*       DOUBLE PRECISION   ABSTOL, VL, VU
*       ..
*       .. Array Arguments ..
*       INTEGER            IFAIL( * ), IWORK( * )
*       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
*       ..
*  
*  Purpose
*  =======
*
*>\details \b Purpose:
*>\verbatim
*>
*> DSTEVX computes selected eigenvalues and, optionally, eigenvectors
*> of a real symmetric tridiagonal matrix A.  Eigenvalues and
*> eigenvectors can be selected by specifying either a range of values
*> or a range of indices for the desired eigenvalues.
*>
*>\endverbatim
*
*  Arguments
*  =========
*
*> \param[in] JOBZ
*> \verbatim
*>          JOBZ is CHARACTER*1
*>          = 'N':  Compute eigenvalues only;
*>          = 'V':  Compute eigenvalues and eigenvectors.
*> \endverbatim
*>
*> \param[in] RANGE
*> \verbatim
*>          RANGE is CHARACTER*1
*>          = 'A': all eigenvalues will be found.
*>          = 'V': all eigenvalues in the half-open interval (VL,VU]
*>                 will be found.
*>          = 'I': the IL-th through IU-th eigenvalues will be found.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix.  N >= 0.
*> \endverbatim
*>
*> \param[in,out] D
*> \verbatim
*>          D is DOUBLE PRECISION array, dimension (N)
*>          On entry, the n diagonal elements of the tridiagonal matrix
*>          A.
*>          On exit, D may be multiplied by a constant factor chosen
*>          to avoid over/underflow in computing the eigenvalues.
*> \endverbatim
*>
*> \param[in,out] E
*> \verbatim
*>          E is DOUBLE PRECISION array, dimension (max(1,N-1))
*>          On entry, the (n-1) subdiagonal elements of the tridiagonal
*>          matrix A in elements 1 to N-1 of E.
*>          On exit, E may be multiplied by a constant factor chosen
*>          to avoid over/underflow in computing the eigenvalues.
*> \endverbatim
*>
*> \param[in] VL
*> \verbatim
*>          VL is DOUBLE PRECISION
*> \endverbatim
*>
*> \param[in] VU
*> \verbatim
*>          VU is DOUBLE PRECISION
*>          If RANGE='V', the lower and upper bounds of the interval to
*>          be searched for eigenvalues. VL < VU.
*>          Not referenced if RANGE = 'A' or 'I'.
*> \endverbatim
*>
*> \param[in] IL
*> \verbatim
*>          IL is INTEGER
*> \endverbatim
*>
*> \param[in] IU
*> \verbatim
*>          IU is INTEGER
*>          If RANGE='I', the indices (in ascending order) of the
*>          smallest and largest eigenvalues to be returned.
*>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
*>          Not referenced if RANGE = 'A' or 'V'.
*> \endverbatim
*>
*> \param[in] ABSTOL
*> \verbatim
*>          ABSTOL is DOUBLE PRECISION
*>          The absolute error tolerance for the eigenvalues.
*>          An approximate eigenvalue is accepted as converged
*>          when it is determined to lie in an interval [a,b]
*>          of width less than or equal to
*> \endverbatim
*> \verbatim
*>                  ABSTOL + EPS *   max( |a|,|b| ) ,
*> \endverbatim
*> \verbatim
*>          where EPS is the machine precision.  If ABSTOL is less
*>          than or equal to zero, then  EPS*|T|  will be used in
*>          its place, where |T| is the 1-norm of the tridiagonal
*>          matrix.
*> \endverbatim
*> \verbatim
*>          Eigenvalues will be computed most accurately when ABSTOL is
*>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
*>          If this routine returns with INFO>0, indicating that some
*>          eigenvectors did not converge, try setting ABSTOL to
*>          2*DLAMCH('S').
*> \endverbatim
*> \verbatim
*>          See "Computing Small Singular Values of Bidiagonal Matrices
*>          with Guaranteed High Relative Accuracy," by Demmel and
*>          Kahan, LAPACK Working Note #3.
*> \endverbatim
*>
*> \param[out] M
*> \verbatim
*>          M is INTEGER
*>          The total number of eigenvalues found.  0 <= M <= N.
*>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
*> \endverbatim
*>
*> \param[out] W
*> \verbatim
*>          W is DOUBLE PRECISION array, dimension (N)
*>          The first M elements contain the selected eigenvalues in
*>          ascending order.
*> \endverbatim
*>
*> \param[out] Z
*> \verbatim
*>          Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
*>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
*>          contain the orthonormal eigenvectors of the matrix A
*>          corresponding to the selected eigenvalues, with the i-th
*>          column of Z holding the eigenvector associated with W(i).
*>          If an eigenvector fails to converge (INFO > 0), then that
*>          column of Z contains the latest approximation to the
*>          eigenvector, and the index of the eigenvector is returned
*>          in IFAIL.  If JOBZ = 'N', then Z is not referenced.
*>          Note: the user must ensure that at least max(1,M) columns are
*>          supplied in the array Z; if RANGE = 'V', the exact value of M
*>          is not known in advance and an upper bound must be used.
*> \endverbatim
*>
*> \param[in] LDZ
*> \verbatim
*>          LDZ is INTEGER
*>          The leading dimension of the array Z.  LDZ >= 1, and if
*>          JOBZ = 'V', LDZ >= max(1,N).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is DOUBLE PRECISION array, dimension (5*N)
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*>          IWORK is INTEGER array, dimension (5*N)
*> \endverbatim
*>
*> \param[out] IFAIL
*> \verbatim
*>          IFAIL is INTEGER array, dimension (N)
*>          If JOBZ = 'V', then if INFO = 0, the first M elements of
*>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
*>          indices of the eigenvectors that failed to converge.
*>          If JOBZ = 'N', then IFAIL is not referenced.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*>          > 0:  if INFO = i, then i eigenvectors failed to converge.
*>                Their indices are stored in array IFAIL.
*> \endverbatim
*>
*
*  Authors
*  =======
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup doubleOTHEReigen
*
*  =====================================================================
      SUBROUTINE DSTEVX( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
     $                   M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO )
*
*  -- LAPACK driver routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          JOBZ, RANGE
      INTEGER            IL, INFO, IU, LDZ, M, N
      DOUBLE PRECISION   ABSTOL, VL, VU
*     ..
*     .. Array Arguments ..
      INTEGER            IFAIL( * ), IWORK( * )
      DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            ALLEIG, INDEIG, TEST, VALEIG, WANTZ
      CHARACTER          ORDER
      INTEGER            I, IMAX, INDIBL, INDISP, INDIWO, INDWRK,
     $                   ISCALE, ITMP1, J, JJ, NSPLIT
      DOUBLE PRECISION   BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA, SMLNUM,
     $                   TMP1, TNRM, VLL, VUU
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, DLANST
      EXTERNAL           LSAME, DLAMCH, DLANST
*     ..
*     .. External Subroutines ..
      EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTEIN, DSTEQR, DSTERF,
     $                   DSWAP, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      WANTZ = LSAME( JOBZ, 'V' )
      ALLEIG = LSAME( RANGE, 'A' )
      VALEIG = LSAME( RANGE, 'V' )
      INDEIG = LSAME( RANGE, 'I' )
*
      INFO = 0
      IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
         INFO = -1
      ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE
         IF( VALEIG ) THEN
            IF( N.GT.0 .AND. VU.LE.VL )
     $         INFO = -7
         ELSE IF( INDEIG ) THEN
            IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
               INFO = -8
            ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
               INFO = -9
            END IF
         END IF
      END IF
      IF( INFO.EQ.0 ) THEN
         IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
     $      INFO = -14
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DSTEVX', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      M = 0
      IF( N.EQ.0 )
     $   RETURN
*
      IF( N.EQ.1 ) THEN
         IF( ALLEIG .OR. INDEIG ) THEN
            M = 1
            W( 1 ) = D( 1 )
         ELSE
            IF( VL.LT.D( 1 ) .AND. VU.GE.D( 1 ) ) THEN
               M = 1
               W( 1 ) = D( 1 )
            END IF
         END IF
         IF( WANTZ )
     $      Z( 1, 1 ) = ONE
         RETURN
      END IF
*
*     Get machine constants.
*
      SAFMIN = DLAMCH( 'Safe minimum' )
      EPS = DLAMCH( 'Precision' )
      SMLNUM = SAFMIN / EPS
      BIGNUM = ONE / SMLNUM
      RMIN = SQRT( SMLNUM )
      RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
*
*     Scale matrix to allowable range, if necessary.
*
      ISCALE = 0
      IF( VALEIG ) THEN
         VLL = VL
         VUU = VU
      ELSE
         VLL = ZERO
         VUU = ZERO
      END IF
      TNRM = DLANST( 'M', N, D, E )
      IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
         ISCALE = 1
         SIGMA = RMIN / TNRM
      ELSE IF( TNRM.GT.RMAX ) THEN
         ISCALE = 1
         SIGMA = RMAX / TNRM
      END IF
      IF( ISCALE.EQ.1 ) THEN
         CALL DSCAL( N, SIGMA, D, 1 )
         CALL DSCAL( N-1, SIGMA, E( 1 ), 1 )
         IF( VALEIG ) THEN
            VLL = VL*SIGMA
            VUU = VU*SIGMA
         END IF
      END IF
*
*     If all eigenvalues are desired and ABSTOL is less than zero, then
*     call DSTERF or SSTEQR.  If this fails for some eigenvalue, then
*     try DSTEBZ.
*
      TEST = .FALSE.
      IF( INDEIG ) THEN
         IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
            TEST = .TRUE.
         END IF
      END IF
      IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
         CALL DCOPY( N, D, 1, W, 1 )
         CALL DCOPY( N-1, E( 1 ), 1, WORK( 1 ), 1 )
         INDWRK = N + 1
         IF( .NOT.WANTZ ) THEN
            CALL DSTERF( N, W, WORK, INFO )
         ELSE
            CALL DSTEQR( 'I', N, W, WORK, Z, LDZ, WORK( INDWRK ), INFO )
            IF( INFO.EQ.0 ) THEN
               DO 10 I = 1, N
                  IFAIL( I ) = 0
   10          CONTINUE
            END IF
         END IF
         IF( INFO.EQ.0 ) THEN
            M = N
            GO TO 20
         END IF
         INFO = 0
      END IF
*
*     Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN.
*
      IF( WANTZ ) THEN
         ORDER = 'B'
      ELSE
         ORDER = 'E'
      END IF
      INDWRK = 1
      INDIBL = 1
      INDISP = INDIBL + N
      INDIWO = INDISP + N
      CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTOL, D, E, M,
     $             NSPLIT, W, IWORK( INDIBL ), IWORK( INDISP ),
     $             WORK( INDWRK ), IWORK( INDIWO ), INFO )
*
      IF( WANTZ ) THEN
         CALL DSTEIN( N, D, E, M, W, IWORK( INDIBL ), IWORK( INDISP ),
     $                Z, LDZ, WORK( INDWRK ), IWORK( INDIWO ), IFAIL,
     $                INFO )
      END IF
*
*     If matrix was scaled, then rescale eigenvalues appropriately.
*
   20 CONTINUE
      IF( ISCALE.EQ.1 ) THEN
         IF( INFO.EQ.0 ) THEN
            IMAX = M
         ELSE
            IMAX = INFO - 1
         END IF
         CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
      END IF
*
*     If eigenvalues are not in order, then sort them, along with
*     eigenvectors.
*
      IF( WANTZ ) THEN
         DO 40 J = 1, M - 1
            I = 0
            TMP1 = W( J )
            DO 30 JJ = J + 1, M
               IF( W( JJ ).LT.TMP1 ) THEN
                  I = JJ
                  TMP1 = W( JJ )
               END IF
   30       CONTINUE
*
            IF( I.NE.0 ) THEN
               ITMP1 = IWORK( INDIBL+I-1 )
               W( I ) = W( J )
               IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
               W( J ) = TMP1
               IWORK( INDIBL+J-1 ) = ITMP1
               CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
               IF( INFO.NE.0 ) THEN
                  ITMP1 = IFAIL( I )
                  IFAIL( I ) = IFAIL( J )
                  IFAIL( J ) = ITMP1
               END IF
            END IF
   40    CONTINUE
      END IF
*
      RETURN
*
*     End of DSTEVX
*
      END