summaryrefslogtreecommitdiff
path: root/SRC/dspgst.f
blob: 86729f6ada570ad95477490d0702c75e45be2ce2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
      SUBROUTINE DSPGST( ITYPE, UPLO, N, AP, BP, INFO )
*
*  -- LAPACK routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, ITYPE, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   AP( * ), BP( * )
*     ..
*
*  Purpose
*  =======
*
*  DSPGST reduces a real symmetric-definite generalized eigenproblem
*  to standard form, using packed storage.
*
*  If ITYPE = 1, the problem is A*x = lambda*B*x,
*  and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
*
*  If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
*  B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.
*
*  B must have been previously factorized as U**T*U or L*L**T by DPPTRF.
*
*  Arguments
*  =========
*
*  ITYPE   (input) INTEGER
*          = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
*          = 2 or 3: compute U*A*U**T or L**T*A*L.
*
*  UPLO    (input) CHARACTER*1
*          = 'U':  Upper triangle of A is stored and B is factored as
*                  U**T*U;
*          = 'L':  Lower triangle of A is stored and B is factored as
*                  L*L**T.
*
*  N       (input) INTEGER
*          The order of the matrices A and B.  N >= 0.
*
*  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
*          On entry, the upper or lower triangle of the symmetric matrix
*          A, packed columnwise in a linear array.  The j-th column of A
*          is stored in the array AP as follows:
*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*
*          On exit, if INFO = 0, the transformed matrix, stored in the
*          same format as A.
*
*  BP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
*          The triangular factor from the Cholesky factorization of B,
*          stored in the same format as A, as returned by DPPTRF.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, HALF
      PARAMETER          ( ONE = 1.0D0, HALF = 0.5D0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            J, J1, J1J1, JJ, K, K1, K1K1, KK
      DOUBLE PRECISION   AJJ, AKK, BJJ, BKK, CT
*     ..
*     .. External Subroutines ..
      EXTERNAL           DAXPY, DSCAL, DSPMV, DSPR2, DTPMV, DTPSV,
     $                   XERBLA
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DDOT
      EXTERNAL           LSAME, DDOT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
         INFO = -1
      ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DSPGST', -INFO )
         RETURN
      END IF
*
      IF( ITYPE.EQ.1 ) THEN
         IF( UPPER ) THEN
*
*           Compute inv(U**T)*A*inv(U)
*
*           J1 and JJ are the indices of A(1,j) and A(j,j)
*
            JJ = 0
            DO 10 J = 1, N
               J1 = JJ + 1
               JJ = JJ + J
*
*              Compute the j-th column of the upper triangle of A
*
               BJJ = BP( JJ )
               CALL DTPSV( UPLO, 'Transpose', 'Nonunit', J, BP,
     $                     AP( J1 ), 1 )
               CALL DSPMV( UPLO, J-1, -ONE, AP, BP( J1 ), 1, ONE,
     $                     AP( J1 ), 1 )
               CALL DSCAL( J-1, ONE / BJJ, AP( J1 ), 1 )
               AP( JJ ) = ( AP( JJ )-DDOT( J-1, AP( J1 ), 1, BP( J1 ),
     $                    1 ) ) / BJJ
   10       CONTINUE
         ELSE
*
*           Compute inv(L)*A*inv(L**T)
*
*           KK and K1K1 are the indices of A(k,k) and A(k+1,k+1)
*
            KK = 1
            DO 20 K = 1, N
               K1K1 = KK + N - K + 1
*
*              Update the lower triangle of A(k:n,k:n)
*
               AKK = AP( KK )
               BKK = BP( KK )
               AKK = AKK / BKK**2
               AP( KK ) = AKK
               IF( K.LT.N ) THEN
                  CALL DSCAL( N-K, ONE / BKK, AP( KK+1 ), 1 )
                  CT = -HALF*AKK
                  CALL DAXPY( N-K, CT, BP( KK+1 ), 1, AP( KK+1 ), 1 )
                  CALL DSPR2( UPLO, N-K, -ONE, AP( KK+1 ), 1,
     $                        BP( KK+1 ), 1, AP( K1K1 ) )
                  CALL DAXPY( N-K, CT, BP( KK+1 ), 1, AP( KK+1 ), 1 )
                  CALL DTPSV( UPLO, 'No transpose', 'Non-unit', N-K,
     $                        BP( K1K1 ), AP( KK+1 ), 1 )
               END IF
               KK = K1K1
   20       CONTINUE
         END IF
      ELSE
         IF( UPPER ) THEN
*
*           Compute U*A*U**T
*
*           K1 and KK are the indices of A(1,k) and A(k,k)
*
            KK = 0
            DO 30 K = 1, N
               K1 = KK + 1
               KK = KK + K
*
*              Update the upper triangle of A(1:k,1:k)
*
               AKK = AP( KK )
               BKK = BP( KK )
               CALL DTPMV( UPLO, 'No transpose', 'Non-unit', K-1, BP,
     $                     AP( K1 ), 1 )
               CT = HALF*AKK
               CALL DAXPY( K-1, CT, BP( K1 ), 1, AP( K1 ), 1 )
               CALL DSPR2( UPLO, K-1, ONE, AP( K1 ), 1, BP( K1 ), 1,
     $                     AP )
               CALL DAXPY( K-1, CT, BP( K1 ), 1, AP( K1 ), 1 )
               CALL DSCAL( K-1, BKK, AP( K1 ), 1 )
               AP( KK ) = AKK*BKK**2
   30       CONTINUE
         ELSE
*
*           Compute L**T *A*L
*
*           JJ and J1J1 are the indices of A(j,j) and A(j+1,j+1)
*
            JJ = 1
            DO 40 J = 1, N
               J1J1 = JJ + N - J + 1
*
*              Compute the j-th column of the lower triangle of A
*
               AJJ = AP( JJ )
               BJJ = BP( JJ )
               AP( JJ ) = AJJ*BJJ + DDOT( N-J, AP( JJ+1 ), 1,
     $                    BP( JJ+1 ), 1 )
               CALL DSCAL( N-J, BJJ, AP( JJ+1 ), 1 )
               CALL DSPMV( UPLO, N-J, ONE, AP( J1J1 ), BP( JJ+1 ), 1,
     $                     ONE, AP( JJ+1 ), 1 )
               CALL DTPMV( UPLO, 'Transpose', 'Non-unit', N-J+1,
     $                     BP( JJ ), AP( JJ ), 1 )
               JJ = J1J1
   40       CONTINUE
         END IF
      END IF
      RETURN
*
*     End of DSPGST
*
      END