summaryrefslogtreecommitdiff
path: root/SRC/dptcon.f
blob: 78d81dceb3f6fcb1d6c8c7626ae01f2e8b6c7030 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
*> \brief \b DPTCON
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download DPTCON + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dptcon.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dptcon.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dptcon.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE DPTCON( N, D, E, ANORM, RCOND, WORK, INFO )
* 
*       .. Scalar Arguments ..
*       INTEGER            INFO, N
*       DOUBLE PRECISION   ANORM, RCOND
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   D( * ), E( * ), WORK( * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DPTCON computes the reciprocal of the condition number (in the
*> 1-norm) of a real symmetric positive definite tridiagonal matrix
*> using the factorization A = L*D*L**T or A = U**T*D*U computed by
*> DPTTRF.
*>
*> Norm(inv(A)) is computed by a direct method, and the reciprocal of
*> the condition number is computed as
*>              RCOND = 1 / (ANORM * norm(inv(A))).
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*>          D is DOUBLE PRECISION array, dimension (N)
*>          The n diagonal elements of the diagonal matrix D from the
*>          factorization of A, as computed by DPTTRF.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*>          E is DOUBLE PRECISION array, dimension (N-1)
*>          The (n-1) off-diagonal elements of the unit bidiagonal factor
*>          U or L from the factorization of A,  as computed by DPTTRF.
*> \endverbatim
*>
*> \param[in] ANORM
*> \verbatim
*>          ANORM is DOUBLE PRECISION
*>          The 1-norm of the original matrix A.
*> \endverbatim
*>
*> \param[out] RCOND
*> \verbatim
*>          RCOND is DOUBLE PRECISION
*>          The reciprocal of the condition number of the matrix A,
*>          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is the
*>          1-norm of inv(A) computed in this routine.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date September 2012
*
*> \ingroup doublePTcomputational
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  The method used is described in Nicholas J. Higham, "Efficient
*>  Algorithms for Computing the Condition Number of a Tridiagonal
*>  Matrix", SIAM J. Sci. Stat. Comput., Vol. 7, No. 1, January 1986.
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE DPTCON( N, D, E, ANORM, RCOND, WORK, INFO )
*
*  -- LAPACK computational routine (version 3.4.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     September 2012
*
*     .. Scalar Arguments ..
      INTEGER            INFO, N
      DOUBLE PRECISION   ANORM, RCOND
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   D( * ), E( * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, IX
      DOUBLE PRECISION   AINVNM
*     ..
*     .. External Functions ..
      INTEGER            IDAMAX
      EXTERNAL           IDAMAX
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments.
*
      INFO = 0
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( ANORM.LT.ZERO ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DPTCON', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      RCOND = ZERO
      IF( N.EQ.0 ) THEN
         RCOND = ONE
         RETURN
      ELSE IF( ANORM.EQ.ZERO ) THEN
         RETURN
      END IF
*
*     Check that D(1:N) is positive.
*
      DO 10 I = 1, N
         IF( D( I ).LE.ZERO )
     $      RETURN
   10 CONTINUE
*
*     Solve M(A) * x = e, where M(A) = (m(i,j)) is given by
*
*        m(i,j) =  abs(A(i,j)), i = j,
*        m(i,j) = -abs(A(i,j)), i .ne. j,
*
*     and e = [ 1, 1, ..., 1 ]**T.  Note M(A) = M(L)*D*M(L)**T.
*
*     Solve M(L) * x = e.
*
      WORK( 1 ) = ONE
      DO 20 I = 2, N
         WORK( I ) = ONE + WORK( I-1 )*ABS( E( I-1 ) )
   20 CONTINUE
*
*     Solve D * M(L)**T * x = b.
*
      WORK( N ) = WORK( N ) / D( N )
      DO 30 I = N - 1, 1, -1
         WORK( I ) = WORK( I ) / D( I ) + WORK( I+1 )*ABS( E( I ) )
   30 CONTINUE
*
*     Compute AINVNM = max(x(i)), 1<=i<=n.
*
      IX = IDAMAX( N, WORK, 1 )
      AINVNM = ABS( WORK( IX ) )
*
*     Compute the reciprocal condition number.
*
      IF( AINVNM.NE.ZERO )
     $   RCOND = ( ONE / AINVNM ) / ANORM
*
      RETURN
*
*     End of DPTCON
*
      END