1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
|
SUBROUTINE DPPTRI( UPLO, N, AP, INFO )
*
* -- LAPACK routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION AP( * )
* ..
*
* Purpose
* =======
*
* DPPTRI computes the inverse of a real symmetric positive definite
* matrix A using the Cholesky factorization A = U**T*U or A = L*L**T
* computed by DPPTRF.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* = 'U': Upper triangular factor is stored in AP;
* = 'L': Lower triangular factor is stored in AP.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
* On entry, the triangular factor U or L from the Cholesky
* factorization A = U**T*U or A = L*L**T, packed columnwise as
* a linear array. The j-th column of U or L is stored in the
* array AP as follows:
* if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
*
* On exit, the upper or lower triangle of the (symmetric)
* inverse of A, overwriting the input factor U or L.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = i, the (i,i) element of the factor U or L is
* zero, and the inverse could not be computed.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL UPPER
INTEGER J, JC, JJ, JJN
DOUBLE PRECISION AJJ
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DDOT
EXTERNAL LSAME, DDOT
* ..
* .. External Subroutines ..
EXTERNAL DSCAL, DSPR, DTPMV, DTPTRI, XERBLA
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DPPTRI', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Invert the triangular Cholesky factor U or L.
*
CALL DTPTRI( UPLO, 'Non-unit', N, AP, INFO )
IF( INFO.GT.0 )
$ RETURN
*
IF( UPPER ) THEN
*
* Compute the product inv(U) * inv(U)**T.
*
JJ = 0
DO 10 J = 1, N
JC = JJ + 1
JJ = JJ + J
IF( J.GT.1 )
$ CALL DSPR( 'Upper', J-1, ONE, AP( JC ), 1, AP )
AJJ = AP( JJ )
CALL DSCAL( J, AJJ, AP( JC ), 1 )
10 CONTINUE
*
ELSE
*
* Compute the product inv(L)**T * inv(L).
*
JJ = 1
DO 20 J = 1, N
JJN = JJ + N - J + 1
AP( JJ ) = DDOT( N-J+1, AP( JJ ), 1, AP( JJ ), 1 )
IF( J.LT.N )
$ CALL DTPMV( 'Lower', 'Transpose', 'Non-unit', N-J,
$ AP( JJN ), AP( JJ+1 ), 1 )
JJ = JJN
20 CONTINUE
END IF
*
RETURN
*
* End of DPPTRI
*
END
|