1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
|
*> \brief \b DLASD5 computes the square root of the i-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix. Used by sbdsdc.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLASD5 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd5.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd5.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd5.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DLASD5( I, D, Z, DELTA, RHO, DSIGMA, WORK )
*
* .. Scalar Arguments ..
* INTEGER I
* DOUBLE PRECISION DSIGMA, RHO
* ..
* .. Array Arguments ..
* DOUBLE PRECISION D( 2 ), DELTA( 2 ), WORK( 2 ), Z( 2 )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> This subroutine computes the square root of the I-th eigenvalue
*> of a positive symmetric rank-one modification of a 2-by-2 diagonal
*> matrix
*>
*> diag( D ) * diag( D ) + RHO * Z * transpose(Z) .
*>
*> The diagonal entries in the array D are assumed to satisfy
*>
*> 0 <= D(i) < D(j) for i < j .
*>
*> We also assume RHO > 0 and that the Euclidean norm of the vector
*> Z is one.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] I
*> \verbatim
*> I is INTEGER
*> The index of the eigenvalue to be computed. I = 1 or I = 2.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is DOUBLE PRECISION array, dimension ( 2 )
*> The original eigenvalues. We assume 0 <= D(1) < D(2).
*> \endverbatim
*>
*> \param[in] Z
*> \verbatim
*> Z is DOUBLE PRECISION array, dimension ( 2 )
*> The components of the updating vector.
*> \endverbatim
*>
*> \param[out] DELTA
*> \verbatim
*> DELTA is DOUBLE PRECISION array, dimension ( 2 )
*> Contains (D(j) - sigma_I) in its j-th component.
*> The vector DELTA contains the information necessary
*> to construct the eigenvectors.
*> \endverbatim
*>
*> \param[in] RHO
*> \verbatim
*> RHO is DOUBLE PRECISION
*> The scalar in the symmetric updating formula.
*> \endverbatim
*>
*> \param[out] DSIGMA
*> \verbatim
*> DSIGMA is DOUBLE PRECISION
*> The computed sigma_I, the I-th updated eigenvalue.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension ( 2 )
*> WORK contains (D(j) + sigma_I) in its j-th component.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup auxOTHERauxiliary
*
*> \par Contributors:
* ==================
*>
*> Ren-Cang Li, Computer Science Division, University of California
*> at Berkeley, USA
*>
* =====================================================================
SUBROUTINE DLASD5( I, D, Z, DELTA, RHO, DSIGMA, WORK )
*
* -- LAPACK auxiliary routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER I
DOUBLE PRECISION DSIGMA, RHO
* ..
* .. Array Arguments ..
DOUBLE PRECISION D( 2 ), DELTA( 2 ), WORK( 2 ), Z( 2 )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, THREE, FOUR
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
$ THREE = 3.0D+0, FOUR = 4.0D+0 )
* ..
* .. Local Scalars ..
DOUBLE PRECISION B, C, DEL, DELSQ, TAU, W
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, SQRT
* ..
* .. Executable Statements ..
*
DEL = D( 2 ) - D( 1 )
DELSQ = DEL*( D( 2 )+D( 1 ) )
IF( I.EQ.1 ) THEN
W = ONE + FOUR*RHO*( Z( 2 )*Z( 2 ) / ( D( 1 )+THREE*D( 2 ) )-
$ Z( 1 )*Z( 1 ) / ( THREE*D( 1 )+D( 2 ) ) ) / DEL
IF( W.GT.ZERO ) THEN
B = DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
C = RHO*Z( 1 )*Z( 1 )*DELSQ
*
* B > ZERO, always
*
* The following TAU is DSIGMA * DSIGMA - D( 1 ) * D( 1 )
*
TAU = TWO*C / ( B+SQRT( ABS( B*B-FOUR*C ) ) )
*
* The following TAU is DSIGMA - D( 1 )
*
TAU = TAU / ( D( 1 )+SQRT( D( 1 )*D( 1 )+TAU ) )
DSIGMA = D( 1 ) + TAU
DELTA( 1 ) = -TAU
DELTA( 2 ) = DEL - TAU
WORK( 1 ) = TWO*D( 1 ) + TAU
WORK( 2 ) = ( D( 1 )+TAU ) + D( 2 )
* DELTA( 1 ) = -Z( 1 ) / TAU
* DELTA( 2 ) = Z( 2 ) / ( DEL-TAU )
ELSE
B = -DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
C = RHO*Z( 2 )*Z( 2 )*DELSQ
*
* The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 )
*
IF( B.GT.ZERO ) THEN
TAU = -TWO*C / ( B+SQRT( B*B+FOUR*C ) )
ELSE
TAU = ( B-SQRT( B*B+FOUR*C ) ) / TWO
END IF
*
* The following TAU is DSIGMA - D( 2 )
*
TAU = TAU / ( D( 2 )+SQRT( ABS( D( 2 )*D( 2 )+TAU ) ) )
DSIGMA = D( 2 ) + TAU
DELTA( 1 ) = -( DEL+TAU )
DELTA( 2 ) = -TAU
WORK( 1 ) = D( 1 ) + TAU + D( 2 )
WORK( 2 ) = TWO*D( 2 ) + TAU
* DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
* DELTA( 2 ) = -Z( 2 ) / TAU
END IF
* TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
* DELTA( 1 ) = DELTA( 1 ) / TEMP
* DELTA( 2 ) = DELTA( 2 ) / TEMP
ELSE
*
* Now I=2
*
B = -DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
C = RHO*Z( 2 )*Z( 2 )*DELSQ
*
* The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 )
*
IF( B.GT.ZERO ) THEN
TAU = ( B+SQRT( B*B+FOUR*C ) ) / TWO
ELSE
TAU = TWO*C / ( -B+SQRT( B*B+FOUR*C ) )
END IF
*
* The following TAU is DSIGMA - D( 2 )
*
TAU = TAU / ( D( 2 )+SQRT( D( 2 )*D( 2 )+TAU ) )
DSIGMA = D( 2 ) + TAU
DELTA( 1 ) = -( DEL+TAU )
DELTA( 2 ) = -TAU
WORK( 1 ) = D( 1 ) + TAU + D( 2 )
WORK( 2 ) = TWO*D( 2 ) + TAU
* DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
* DELTA( 2 ) = -Z( 2 ) / TAU
* TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
* DELTA( 1 ) = DELTA( 1 ) / TEMP
* DELTA( 2 ) = DELTA( 2 ) / TEMP
END IF
RETURN
*
* End of DLASD5
*
END
|