summaryrefslogtreecommitdiff
path: root/SRC/dlasd4.f
blob: 8b4a8762c877ef4093462a88269209bb7e228c65 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
*> \brief \b DLASD4 computes the square root of the i-th updated eigenvalue of a positive symmetric rank-one modification to a positive diagonal matrix. Used by dbdsdc.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLASD4 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd4.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd4.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd4.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE DLASD4( N, I, D, Z, DELTA, RHO, SIGMA, WORK, INFO )
*
*       .. Scalar Arguments ..
*       INTEGER            I, INFO, N
*       DOUBLE PRECISION   RHO, SIGMA
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   D( * ), DELTA( * ), WORK( * ), Z( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> This subroutine computes the square root of the I-th updated
*> eigenvalue of a positive symmetric rank-one modification to
*> a positive diagonal matrix whose entries are given as the squares
*> of the corresponding entries in the array d, and that
*>
*>        0 <= D(i) < D(j)  for  i < j
*>
*> and that RHO > 0. This is arranged by the calling routine, and is
*> no loss in generality.  The rank-one modified system is thus
*>
*>        diag( D ) * diag( D ) +  RHO * Z * Z_transpose.
*>
*> where we assume the Euclidean norm of Z is 1.
*>
*> The method consists of approximating the rational functions in the
*> secular equation by simpler interpolating rational functions.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>         The length of all arrays.
*> \endverbatim
*>
*> \param[in] I
*> \verbatim
*>          I is INTEGER
*>         The index of the eigenvalue to be computed.  1 <= I <= N.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*>          D is DOUBLE PRECISION array, dimension ( N )
*>         The original eigenvalues.  It is assumed that they are in
*>         order, 0 <= D(I) < D(J)  for I < J.
*> \endverbatim
*>
*> \param[in] Z
*> \verbatim
*>          Z is DOUBLE PRECISION array, dimension ( N )
*>         The components of the updating vector.
*> \endverbatim
*>
*> \param[out] DELTA
*> \verbatim
*>          DELTA is DOUBLE PRECISION array, dimension ( N )
*>         If N .ne. 1, DELTA contains (D(j) - sigma_I) in its  j-th
*>         component.  If N = 1, then DELTA(1) = 1.  The vector DELTA
*>         contains the information necessary to construct the
*>         (singular) eigenvectors.
*> \endverbatim
*>
*> \param[in] RHO
*> \verbatim
*>          RHO is DOUBLE PRECISION
*>         The scalar in the symmetric updating formula.
*> \endverbatim
*>
*> \param[out] SIGMA
*> \verbatim
*>          SIGMA is DOUBLE PRECISION
*>         The computed sigma_I, the I-th updated eigenvalue.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is DOUBLE PRECISION array, dimension ( N )
*>         If N .ne. 1, WORK contains (D(j) + sigma_I) in its  j-th
*>         component.  If N = 1, then WORK( 1 ) = 1.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>         = 0:  successful exit
*>         > 0:  if INFO = 1, the updating process failed.
*> \endverbatim
*
*> \par Internal Parameters:
*  =========================
*>
*> \verbatim
*>  Logical variable ORGATI (origin-at-i?) is used for distinguishing
*>  whether D(i) or D(i+1) is treated as the origin.
*>
*>            ORGATI = .true.    origin at i
*>            ORGATI = .false.   origin at i+1
*>
*>  Logical variable SWTCH3 (switch-for-3-poles?) is for noting
*>  if we are working with THREE poles!
*>
*>  MAXIT is the maximum number of iterations allowed for each
*>  eigenvalue.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup OTHERauxiliary
*
*> \par Contributors:
*  ==================
*>
*>     Ren-Cang Li, Computer Science Division, University of California
*>     at Berkeley, USA
*>
*  =====================================================================
      SUBROUTINE DLASD4( N, I, D, Z, DELTA, RHO, SIGMA, WORK, INFO )
*
*  -- LAPACK auxiliary routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      INTEGER            I, INFO, N
      DOUBLE PRECISION   RHO, SIGMA
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   D( * ), DELTA( * ), WORK( * ), Z( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            MAXIT
      PARAMETER          ( MAXIT = 400 )
      DOUBLE PRECISION   ZERO, ONE, TWO, THREE, FOUR, EIGHT, TEN
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
     $                   THREE = 3.0D+0, FOUR = 4.0D+0, EIGHT = 8.0D+0,
     $                   TEN = 10.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            ORGATI, SWTCH, SWTCH3, GEOMAVG
      INTEGER            II, IIM1, IIP1, IP1, ITER, J, NITER
      DOUBLE PRECISION   A, B, C, DELSQ, DELSQ2, SQ2, DPHI, DPSI, DTIIM,
     $                   DTIIP, DTIPSQ, DTISQ, DTNSQ, DTNSQ1, DW, EPS,
     $                   ERRETM, ETA, PHI, PREW, PSI, RHOINV, SGLB,
     $                   SGUB, TAU, TAU2, TEMP, TEMP1, TEMP2, W
*     ..
*     .. Local Arrays ..
      DOUBLE PRECISION   DD( 3 ), ZZ( 3 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLAED6, DLASD5
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, SQRT
*     ..
*     .. Executable Statements ..
*
*     Since this routine is called in an inner loop, we do no argument
*     checking.
*
*     Quick return for N=1 and 2.
*
      INFO = 0
      IF( N.EQ.1 ) THEN
*
*        Presumably, I=1 upon entry
*
         SIGMA = SQRT( D( 1 )*D( 1 )+RHO*Z( 1 )*Z( 1 ) )
         DELTA( 1 ) = ONE
         WORK( 1 ) = ONE
         RETURN
      END IF
      IF( N.EQ.2 ) THEN
         CALL DLASD5( I, D, Z, DELTA, RHO, SIGMA, WORK )
         RETURN
      END IF
*
*     Compute machine epsilon
*
      EPS = DLAMCH( 'Epsilon' )
      RHOINV = ONE / RHO
      TAU2= ZERO
*
*     The case I = N
*
      IF( I.EQ.N ) THEN
*
*        Initialize some basic variables
*
         II = N - 1
         NITER = 1
*
*        Calculate initial guess
*
         TEMP = RHO / TWO
*
*        If ||Z||_2 is not one, then TEMP should be set to
*        RHO * ||Z||_2^2 / TWO
*
         TEMP1 = TEMP / ( D( N )+SQRT( D( N )*D( N )+TEMP ) )
         DO 10 J = 1, N
            WORK( J ) = D( J ) + D( N ) + TEMP1
            DELTA( J ) = ( D( J )-D( N ) ) - TEMP1
   10    CONTINUE
*
         PSI = ZERO
         DO 20 J = 1, N - 2
            PSI = PSI + Z( J )*Z( J ) / ( DELTA( J )*WORK( J ) )
   20    CONTINUE
*
         C = RHOINV + PSI
         W = C + Z( II )*Z( II ) / ( DELTA( II )*WORK( II ) ) +
     $       Z( N )*Z( N ) / ( DELTA( N )*WORK( N ) )
*
         IF( W.LE.ZERO ) THEN
            TEMP1 = SQRT( D( N )*D( N )+RHO )
            TEMP = Z( N-1 )*Z( N-1 ) / ( ( D( N-1 )+TEMP1 )*
     $             ( D( N )-D( N-1 )+RHO / ( D( N )+TEMP1 ) ) ) +
     $             Z( N )*Z( N ) / RHO
*
*           The following TAU2 is to approximate
*           SIGMA_n^2 - D( N )*D( N )
*
            IF( C.LE.TEMP ) THEN
               TAU = RHO
            ELSE
               DELSQ = ( D( N )-D( N-1 ) )*( D( N )+D( N-1 ) )
               A = -C*DELSQ + Z( N-1 )*Z( N-1 ) + Z( N )*Z( N )
               B = Z( N )*Z( N )*DELSQ
               IF( A.LT.ZERO ) THEN
                  TAU2 = TWO*B / ( SQRT( A*A+FOUR*B*C )-A )
               ELSE
                  TAU2 = ( A+SQRT( A*A+FOUR*B*C ) ) / ( TWO*C )
               END IF
               TAU = TAU2 / ( D( N )+SQRT( D( N )*D( N )+TAU2 ) )
            END IF
*
*           It can be proved that
*               D(N)^2+RHO/2 <= SIGMA_n^2 < D(N)^2+TAU2 <= D(N)^2+RHO
*
         ELSE
            DELSQ = ( D( N )-D( N-1 ) )*( D( N )+D( N-1 ) )
            A = -C*DELSQ + Z( N-1 )*Z( N-1 ) + Z( N )*Z( N )
            B = Z( N )*Z( N )*DELSQ
*
*           The following TAU2 is to approximate
*           SIGMA_n^2 - D( N )*D( N )
*
            IF( A.LT.ZERO ) THEN
               TAU2 = TWO*B / ( SQRT( A*A+FOUR*B*C )-A )
            ELSE
               TAU2 = ( A+SQRT( A*A+FOUR*B*C ) ) / ( TWO*C )
            END IF
            TAU = TAU2 / ( D( N )+SQRT( D( N )*D( N )+TAU2 ) )

*
*           It can be proved that
*           D(N)^2 < D(N)^2+TAU2 < SIGMA(N)^2 < D(N)^2+RHO/2
*
         END IF
*
*        The following TAU is to approximate SIGMA_n - D( N )
*
*         TAU = TAU2 / ( D( N )+SQRT( D( N )*D( N )+TAU2 ) )
*
         SIGMA = D( N ) + TAU
         DO 30 J = 1, N
            DELTA( J ) = ( D( J )-D( N ) ) - TAU
            WORK( J ) = D( J ) + D( N ) + TAU
   30    CONTINUE
*
*        Evaluate PSI and the derivative DPSI
*
         DPSI = ZERO
         PSI = ZERO
         ERRETM = ZERO
         DO 40 J = 1, II
            TEMP = Z( J ) / ( DELTA( J )*WORK( J ) )
            PSI = PSI + Z( J )*TEMP
            DPSI = DPSI + TEMP*TEMP
            ERRETM = ERRETM + PSI
   40    CONTINUE
         ERRETM = ABS( ERRETM )
*
*        Evaluate PHI and the derivative DPHI
*
         TEMP = Z( N ) / ( DELTA( N )*WORK( N ) )
         PHI = Z( N )*TEMP
         DPHI = TEMP*TEMP
         ERRETM = EIGHT*( -PHI-PSI ) + ERRETM - PHI + RHOINV
*    $          + ABS( TAU2 )*( DPSI+DPHI )
*
         W = RHOINV + PHI + PSI
*
*        Test for convergence
*
         IF( ABS( W ).LE.EPS*ERRETM ) THEN
            GO TO 240
         END IF
*
*        Calculate the new step
*
         NITER = NITER + 1
         DTNSQ1 = WORK( N-1 )*DELTA( N-1 )
         DTNSQ = WORK( N )*DELTA( N )
         C = W - DTNSQ1*DPSI - DTNSQ*DPHI
         A = ( DTNSQ+DTNSQ1 )*W - DTNSQ*DTNSQ1*( DPSI+DPHI )
         B = DTNSQ*DTNSQ1*W
         IF( C.LT.ZERO )
     $      C = ABS( C )
         IF( C.EQ.ZERO ) THEN
            ETA = RHO - SIGMA*SIGMA
         ELSE IF( A.GE.ZERO ) THEN
            ETA = ( A+SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
         ELSE
            ETA = TWO*B / ( A-SQRT( ABS( A*A-FOUR*B*C ) ) )
         END IF
*
*        Note, eta should be positive if w is negative, and
*        eta should be negative otherwise. However,
*        if for some reason caused by roundoff, eta*w > 0,
*        we simply use one Newton step instead. This way
*        will guarantee eta*w < 0.
*
         IF( W*ETA.GT.ZERO )
     $      ETA = -W / ( DPSI+DPHI )
         TEMP = ETA - DTNSQ
         IF( TEMP.GT.RHO )
     $      ETA = RHO + DTNSQ
*
         ETA = ETA / ( SIGMA+SQRT( ETA+SIGMA*SIGMA ) )
         TAU = TAU + ETA
         SIGMA = SIGMA + ETA
*
         DO 50 J = 1, N
            DELTA( J ) = DELTA( J ) - ETA
            WORK( J ) = WORK( J ) + ETA
   50    CONTINUE
*
*        Evaluate PSI and the derivative DPSI
*
         DPSI = ZERO
         PSI = ZERO
         ERRETM = ZERO
         DO 60 J = 1, II
            TEMP = Z( J ) / ( WORK( J )*DELTA( J ) )
            PSI = PSI + Z( J )*TEMP
            DPSI = DPSI + TEMP*TEMP
            ERRETM = ERRETM + PSI
   60    CONTINUE
         ERRETM = ABS( ERRETM )
*
*        Evaluate PHI and the derivative DPHI
*
         TAU2 = WORK( N )*DELTA( N )
         TEMP = Z( N ) / TAU2
         PHI = Z( N )*TEMP
         DPHI = TEMP*TEMP
         ERRETM = EIGHT*( -PHI-PSI ) + ERRETM - PHI + RHOINV
*    $          + ABS( TAU2 )*( DPSI+DPHI )
*
         W = RHOINV + PHI + PSI
*
*        Main loop to update the values of the array   DELTA
*
         ITER = NITER + 1
*
         DO 90 NITER = ITER, MAXIT
*
*           Test for convergence
*
            IF( ABS( W ).LE.EPS*ERRETM ) THEN
               GO TO 240
            END IF
*
*           Calculate the new step
*
            DTNSQ1 = WORK( N-1 )*DELTA( N-1 )
            DTNSQ = WORK( N )*DELTA( N )
            C = W - DTNSQ1*DPSI - DTNSQ*DPHI
            A = ( DTNSQ+DTNSQ1 )*W - DTNSQ1*DTNSQ*( DPSI+DPHI )
            B = DTNSQ1*DTNSQ*W
            IF( A.GE.ZERO ) THEN
               ETA = ( A+SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
            ELSE
               ETA = TWO*B / ( A-SQRT( ABS( A*A-FOUR*B*C ) ) )
            END IF
*
*           Note, eta should be positive if w is negative, and
*           eta should be negative otherwise. However,
*           if for some reason caused by roundoff, eta*w > 0,
*           we simply use one Newton step instead. This way
*           will guarantee eta*w < 0.
*
            IF( W*ETA.GT.ZERO )
     $         ETA = -W / ( DPSI+DPHI )
            TEMP = ETA - DTNSQ
            IF( TEMP.LE.ZERO )
     $         ETA = ETA / TWO
*
            ETA = ETA / ( SIGMA+SQRT( ETA+SIGMA*SIGMA ) )
            TAU = TAU + ETA
            SIGMA = SIGMA + ETA
*
            DO 70 J = 1, N
               DELTA( J ) = DELTA( J ) - ETA
               WORK( J ) = WORK( J ) + ETA
   70       CONTINUE
*
*           Evaluate PSI and the derivative DPSI
*
            DPSI = ZERO
            PSI = ZERO
            ERRETM = ZERO
            DO 80 J = 1, II
               TEMP = Z( J ) / ( WORK( J )*DELTA( J ) )
               PSI = PSI + Z( J )*TEMP
               DPSI = DPSI + TEMP*TEMP
               ERRETM = ERRETM + PSI
   80       CONTINUE
            ERRETM = ABS( ERRETM )
*
*           Evaluate PHI and the derivative DPHI
*
            TAU2 = WORK( N )*DELTA( N )
            TEMP = Z( N ) / TAU2
            PHI = Z( N )*TEMP
            DPHI = TEMP*TEMP
            ERRETM = EIGHT*( -PHI-PSI ) + ERRETM - PHI + RHOINV
*    $             + ABS( TAU2 )*( DPSI+DPHI )
*
            W = RHOINV + PHI + PSI
   90    CONTINUE
*
*        Return with INFO = 1, NITER = MAXIT and not converged
*
         INFO = 1
         GO TO 240
*
*        End for the case I = N
*
      ELSE
*
*        The case for I < N
*
         NITER = 1
         IP1 = I + 1
*
*        Calculate initial guess
*
         DELSQ = ( D( IP1 )-D( I ) )*( D( IP1 )+D( I ) )
         DELSQ2 = DELSQ / TWO
         SQ2=SQRT( ( D( I )*D( I )+D( IP1 )*D( IP1 ) ) / TWO )
         TEMP = DELSQ2 / ( D( I )+SQ2 )
         DO 100 J = 1, N
            WORK( J ) = D( J ) + D( I ) + TEMP
            DELTA( J ) = ( D( J )-D( I ) ) - TEMP
  100    CONTINUE
*
         PSI = ZERO
         DO 110 J = 1, I - 1
            PSI = PSI + Z( J )*Z( J ) / ( WORK( J )*DELTA( J ) )
  110    CONTINUE
*
         PHI = ZERO
         DO 120 J = N, I + 2, -1
            PHI = PHI + Z( J )*Z( J ) / ( WORK( J )*DELTA( J ) )
  120    CONTINUE
         C = RHOINV + PSI + PHI
         W = C + Z( I )*Z( I ) / ( WORK( I )*DELTA( I ) ) +
     $       Z( IP1 )*Z( IP1 ) / ( WORK( IP1 )*DELTA( IP1 ) )
*
         GEOMAVG = .FALSE.
         IF( W.GT.ZERO ) THEN
*
*           d(i)^2 < the ith sigma^2 < (d(i)^2+d(i+1)^2)/2
*
*           We choose d(i) as origin.
*
            ORGATI = .TRUE.
            II = I
            SGLB = ZERO
            SGUB = DELSQ2  / ( D( I )+SQ2 )
            A = C*DELSQ + Z( I )*Z( I ) + Z( IP1 )*Z( IP1 )
            B = Z( I )*Z( I )*DELSQ
            IF( A.GT.ZERO ) THEN
               TAU2 = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
            ELSE
               TAU2 = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
            END IF
*
*           TAU2 now is an estimation of SIGMA^2 - D( I )^2. The
*           following, however, is the corresponding estimation of
*           SIGMA - D( I ).
*
            TAU = TAU2 / ( D( I )+SQRT( D( I )*D( I )+TAU2 ) )
            TEMP = SQRT(EPS)
            IF( (D(I).LE.TEMP*D(IP1)).AND.(ABS(Z(I)).LE.TEMP)
     $                               .AND.(D(I).GT.ZERO) ) THEN
               TAU = MIN( TEN*D(I), SGUB )
               GEOMAVG = .TRUE.
            END IF
         ELSE
*
*           (d(i)^2+d(i+1)^2)/2 <= the ith sigma^2 < d(i+1)^2/2
*
*           We choose d(i+1) as origin.
*
            ORGATI = .FALSE.
            II = IP1
            SGLB = -DELSQ2  / ( D( II )+SQ2 )
            SGUB = ZERO
            A = C*DELSQ - Z( I )*Z( I ) - Z( IP1 )*Z( IP1 )
            B = Z( IP1 )*Z( IP1 )*DELSQ
            IF( A.LT.ZERO ) THEN
               TAU2 = TWO*B / ( A-SQRT( ABS( A*A+FOUR*B*C ) ) )
            ELSE
               TAU2 = -( A+SQRT( ABS( A*A+FOUR*B*C ) ) ) / ( TWO*C )
            END IF
*
*           TAU2 now is an estimation of SIGMA^2 - D( IP1 )^2. The
*           following, however, is the corresponding estimation of
*           SIGMA - D( IP1 ).
*
            TAU = TAU2 / ( D( IP1 )+SQRT( ABS( D( IP1 )*D( IP1 )+
     $            TAU2 ) ) )
         END IF
*
         SIGMA = D( II ) + TAU
         DO 130 J = 1, N
            WORK( J ) = D( J ) + D( II ) + TAU
            DELTA( J ) = ( D( J )-D( II ) ) - TAU
  130    CONTINUE
         IIM1 = II - 1
         IIP1 = II + 1
*
*        Evaluate PSI and the derivative DPSI
*
         DPSI = ZERO
         PSI = ZERO
         ERRETM = ZERO
         DO 150 J = 1, IIM1
            TEMP = Z( J ) / ( WORK( J )*DELTA( J ) )
            PSI = PSI + Z( J )*TEMP
            DPSI = DPSI + TEMP*TEMP
            ERRETM = ERRETM + PSI
  150    CONTINUE
         ERRETM = ABS( ERRETM )
*
*        Evaluate PHI and the derivative DPHI
*
         DPHI = ZERO
         PHI = ZERO
         DO 160 J = N, IIP1, -1
            TEMP = Z( J ) / ( WORK( J )*DELTA( J ) )
            PHI = PHI + Z( J )*TEMP
            DPHI = DPHI + TEMP*TEMP
            ERRETM = ERRETM + PHI
  160    CONTINUE
*
         W = RHOINV + PHI + PSI
*
*        W is the value of the secular function with
*        its ii-th element removed.
*
         SWTCH3 = .FALSE.
         IF( ORGATI ) THEN
            IF( W.LT.ZERO )
     $         SWTCH3 = .TRUE.
         ELSE
            IF( W.GT.ZERO )
     $         SWTCH3 = .TRUE.
         END IF
         IF( II.EQ.1 .OR. II.EQ.N )
     $      SWTCH3 = .FALSE.
*
         TEMP = Z( II ) / ( WORK( II )*DELTA( II ) )
         DW = DPSI + DPHI + TEMP*TEMP
         TEMP = Z( II )*TEMP
         W = W + TEMP
         ERRETM = EIGHT*( PHI-PSI ) + ERRETM + TWO*RHOINV
     $          + THREE*ABS( TEMP )
*    $          + ABS( TAU2 )*DW
*
*        Test for convergence
*
         IF( ABS( W ).LE.EPS*ERRETM ) THEN
            GO TO 240
         END IF
*
         IF( W.LE.ZERO ) THEN
            SGLB = MAX( SGLB, TAU )
         ELSE
            SGUB = MIN( SGUB, TAU )
         END IF
*
*        Calculate the new step
*
         NITER = NITER + 1
         IF( .NOT.SWTCH3 ) THEN
            DTIPSQ = WORK( IP1 )*DELTA( IP1 )
            DTISQ = WORK( I )*DELTA( I )
            IF( ORGATI ) THEN
               C = W - DTIPSQ*DW + DELSQ*( Z( I ) / DTISQ )**2
            ELSE
               C = W - DTISQ*DW - DELSQ*( Z( IP1 ) / DTIPSQ )**2
            END IF
            A = ( DTIPSQ+DTISQ )*W - DTIPSQ*DTISQ*DW
            B = DTIPSQ*DTISQ*W
            IF( C.EQ.ZERO ) THEN
               IF( A.EQ.ZERO ) THEN
                  IF( ORGATI ) THEN
                     A = Z( I )*Z( I ) + DTIPSQ*DTIPSQ*( DPSI+DPHI )
                  ELSE
                     A = Z( IP1 )*Z( IP1 ) + DTISQ*DTISQ*( DPSI+DPHI )
                  END IF
               END IF
               ETA = B / A
            ELSE IF( A.LE.ZERO ) THEN
               ETA = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
            ELSE
               ETA = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
            END IF
         ELSE
*
*           Interpolation using THREE most relevant poles
*
            DTIIM = WORK( IIM1 )*DELTA( IIM1 )
            DTIIP = WORK( IIP1 )*DELTA( IIP1 )
            TEMP = RHOINV + PSI + PHI
            IF( ORGATI ) THEN
               TEMP1 = Z( IIM1 ) / DTIIM
               TEMP1 = TEMP1*TEMP1
               C = ( TEMP - DTIIP*( DPSI+DPHI ) ) -
     $             ( D( IIM1 )-D( IIP1 ) )*( D( IIM1 )+D( IIP1 ) )*TEMP1
               ZZ( 1 ) = Z( IIM1 )*Z( IIM1 )
               IF( DPSI.LT.TEMP1 ) THEN
                  ZZ( 3 ) = DTIIP*DTIIP*DPHI
               ELSE
                  ZZ( 3 ) = DTIIP*DTIIP*( ( DPSI-TEMP1 )+DPHI )
               END IF
            ELSE
               TEMP1 = Z( IIP1 ) / DTIIP
               TEMP1 = TEMP1*TEMP1
               C = ( TEMP - DTIIM*( DPSI+DPHI ) ) -
     $             ( D( IIP1 )-D( IIM1 ) )*( D( IIM1 )+D( IIP1 ) )*TEMP1
               IF( DPHI.LT.TEMP1 ) THEN
                  ZZ( 1 ) = DTIIM*DTIIM*DPSI
               ELSE
                  ZZ( 1 ) = DTIIM*DTIIM*( DPSI+( DPHI-TEMP1 ) )
               END IF
               ZZ( 3 ) = Z( IIP1 )*Z( IIP1 )
            END IF
            ZZ( 2 ) = Z( II )*Z( II )
            DD( 1 ) = DTIIM
            DD( 2 ) = DELTA( II )*WORK( II )
            DD( 3 ) = DTIIP
            CALL DLAED6( NITER, ORGATI, C, DD, ZZ, W, ETA, INFO )
*
            IF( INFO.NE.0 ) THEN
*
*              If INFO is not 0, i.e., DLAED6 failed, switch back
*              to 2 pole interpolation.
*
               SWTCH3 = .FALSE.
               INFO = 0
               DTIPSQ = WORK( IP1 )*DELTA( IP1 )
               DTISQ = WORK( I )*DELTA( I )
               IF( ORGATI ) THEN
                  C = W - DTIPSQ*DW + DELSQ*( Z( I ) / DTISQ )**2
               ELSE
                  C = W - DTISQ*DW - DELSQ*( Z( IP1 ) / DTIPSQ )**2
               END IF
               A = ( DTIPSQ+DTISQ )*W - DTIPSQ*DTISQ*DW
               B = DTIPSQ*DTISQ*W
               IF( C.EQ.ZERO ) THEN
                  IF( A.EQ.ZERO ) THEN
                     IF( ORGATI ) THEN
                        A = Z( I )*Z( I ) + DTIPSQ*DTIPSQ*( DPSI+DPHI )
                     ELSE
                        A = Z( IP1 )*Z( IP1 ) + DTISQ*DTISQ*( DPSI+DPHI)
                     END IF
                  END IF
                  ETA = B / A
               ELSE IF( A.LE.ZERO ) THEN
                  ETA = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
               ELSE
                  ETA = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
               END IF
            END IF
         END IF
*
*        Note, eta should be positive if w is negative, and
*        eta should be negative otherwise. However,
*        if for some reason caused by roundoff, eta*w > 0,
*        we simply use one Newton step instead. This way
*        will guarantee eta*w < 0.
*
         IF( W*ETA.GE.ZERO )
     $      ETA = -W / DW
*
         ETA = ETA / ( SIGMA+SQRT( SIGMA*SIGMA+ETA ) )
         TEMP = TAU + ETA
         IF( TEMP.GT.SGUB .OR. TEMP.LT.SGLB ) THEN
            IF( W.LT.ZERO ) THEN
               ETA = ( SGUB-TAU ) / TWO
            ELSE
               ETA = ( SGLB-TAU ) / TWO
            END IF
            IF( GEOMAVG ) THEN
               IF( W .LT. ZERO ) THEN
                  IF( TAU .GT. ZERO ) THEN
                     ETA = SQRT(SGUB*TAU)-TAU
                  END IF
               ELSE
                  IF( SGLB .GT. ZERO ) THEN
                     ETA = SQRT(SGLB*TAU)-TAU
                  END IF
               END IF
            END IF
         END IF
*
         PREW = W
*
         TAU = TAU + ETA
         SIGMA = SIGMA + ETA
*
         DO 170 J = 1, N
            WORK( J ) = WORK( J ) + ETA
            DELTA( J ) = DELTA( J ) - ETA
  170    CONTINUE
*
*        Evaluate PSI and the derivative DPSI
*
         DPSI = ZERO
         PSI = ZERO
         ERRETM = ZERO
         DO 180 J = 1, IIM1
            TEMP = Z( J ) / ( WORK( J )*DELTA( J ) )
            PSI = PSI + Z( J )*TEMP
            DPSI = DPSI + TEMP*TEMP
            ERRETM = ERRETM + PSI
  180    CONTINUE
         ERRETM = ABS( ERRETM )
*
*        Evaluate PHI and the derivative DPHI
*
         DPHI = ZERO
         PHI = ZERO
         DO 190 J = N, IIP1, -1
            TEMP = Z( J ) / ( WORK( J )*DELTA( J ) )
            PHI = PHI + Z( J )*TEMP
            DPHI = DPHI + TEMP*TEMP
            ERRETM = ERRETM + PHI
  190    CONTINUE
*
         TAU2 = WORK( II )*DELTA( II )
         TEMP = Z( II ) / TAU2
         DW = DPSI + DPHI + TEMP*TEMP
         TEMP = Z( II )*TEMP
         W = RHOINV + PHI + PSI + TEMP
         ERRETM = EIGHT*( PHI-PSI ) + ERRETM + TWO*RHOINV
     $          + THREE*ABS( TEMP )
*    $          + ABS( TAU2 )*DW
*
         SWTCH = .FALSE.
         IF( ORGATI ) THEN
            IF( -W.GT.ABS( PREW ) / TEN )
     $         SWTCH = .TRUE.
         ELSE
            IF( W.GT.ABS( PREW ) / TEN )
     $         SWTCH = .TRUE.
         END IF
*
*        Main loop to update the values of the array   DELTA and WORK
*
         ITER = NITER + 1
*
         DO 230 NITER = ITER, MAXIT
*
*           Test for convergence
*
            IF( ABS( W ).LE.EPS*ERRETM ) THEN
*     $          .OR. (SGUB-SGLB).LE.EIGHT*ABS(SGUB+SGLB) ) THEN
               GO TO 240
            END IF
*
            IF( W.LE.ZERO ) THEN
               SGLB = MAX( SGLB, TAU )
            ELSE
               SGUB = MIN( SGUB, TAU )
            END IF
*
*           Calculate the new step
*
            IF( .NOT.SWTCH3 ) THEN
               DTIPSQ = WORK( IP1 )*DELTA( IP1 )
               DTISQ = WORK( I )*DELTA( I )
               IF( .NOT.SWTCH ) THEN
                  IF( ORGATI ) THEN
                     C = W - DTIPSQ*DW + DELSQ*( Z( I ) / DTISQ )**2
                  ELSE
                     C = W - DTISQ*DW - DELSQ*( Z( IP1 ) / DTIPSQ )**2
                  END IF
               ELSE
                  TEMP = Z( II ) / ( WORK( II )*DELTA( II ) )
                  IF( ORGATI ) THEN
                     DPSI = DPSI + TEMP*TEMP
                  ELSE
                     DPHI = DPHI + TEMP*TEMP
                  END IF
                  C = W - DTISQ*DPSI - DTIPSQ*DPHI
               END IF
               A = ( DTIPSQ+DTISQ )*W - DTIPSQ*DTISQ*DW
               B = DTIPSQ*DTISQ*W
               IF( C.EQ.ZERO ) THEN
                  IF( A.EQ.ZERO ) THEN
                     IF( .NOT.SWTCH ) THEN
                        IF( ORGATI ) THEN
                           A = Z( I )*Z( I ) + DTIPSQ*DTIPSQ*
     $                         ( DPSI+DPHI )
                        ELSE
                           A = Z( IP1 )*Z( IP1 ) +
     $                         DTISQ*DTISQ*( DPSI+DPHI )
                        END IF
                     ELSE
                        A = DTISQ*DTISQ*DPSI + DTIPSQ*DTIPSQ*DPHI
                     END IF
                  END IF
                  ETA = B / A
               ELSE IF( A.LE.ZERO ) THEN
                  ETA = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
               ELSE
                  ETA = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
               END IF
            ELSE
*
*              Interpolation using THREE most relevant poles
*
               DTIIM = WORK( IIM1 )*DELTA( IIM1 )
               DTIIP = WORK( IIP1 )*DELTA( IIP1 )
               TEMP = RHOINV + PSI + PHI
               IF( SWTCH ) THEN
                  C = TEMP - DTIIM*DPSI - DTIIP*DPHI
                  ZZ( 1 ) = DTIIM*DTIIM*DPSI
                  ZZ( 3 ) = DTIIP*DTIIP*DPHI
               ELSE
                  IF( ORGATI ) THEN
                     TEMP1 = Z( IIM1 ) / DTIIM
                     TEMP1 = TEMP1*TEMP1
                     TEMP2 = ( D( IIM1 )-D( IIP1 ) )*
     $                       ( D( IIM1 )+D( IIP1 ) )*TEMP1
                     C = TEMP - DTIIP*( DPSI+DPHI ) - TEMP2
                     ZZ( 1 ) = Z( IIM1 )*Z( IIM1 )
                     IF( DPSI.LT.TEMP1 ) THEN
                        ZZ( 3 ) = DTIIP*DTIIP*DPHI
                     ELSE
                        ZZ( 3 ) = DTIIP*DTIIP*( ( DPSI-TEMP1 )+DPHI )
                     END IF
                  ELSE
                     TEMP1 = Z( IIP1 ) / DTIIP
                     TEMP1 = TEMP1*TEMP1
                     TEMP2 = ( D( IIP1 )-D( IIM1 ) )*
     $                       ( D( IIM1 )+D( IIP1 ) )*TEMP1
                     C = TEMP - DTIIM*( DPSI+DPHI ) - TEMP2
                     IF( DPHI.LT.TEMP1 ) THEN
                        ZZ( 1 ) = DTIIM*DTIIM*DPSI
                     ELSE
                        ZZ( 1 ) = DTIIM*DTIIM*( DPSI+( DPHI-TEMP1 ) )
                     END IF
                     ZZ( 3 ) = Z( IIP1 )*Z( IIP1 )
                  END IF
               END IF
               DD( 1 ) = DTIIM
               DD( 2 ) = DELTA( II )*WORK( II )
               DD( 3 ) = DTIIP
               CALL DLAED6( NITER, ORGATI, C, DD, ZZ, W, ETA, INFO )
*
               IF( INFO.NE.0 ) THEN
*
*                 If INFO is not 0, i.e., DLAED6 failed, switch
*                 back to two pole interpolation
*
                  SWTCH3 = .FALSE.
                  INFO = 0
                  DTIPSQ = WORK( IP1 )*DELTA( IP1 )
                  DTISQ = WORK( I )*DELTA( I )
                  IF( .NOT.SWTCH ) THEN
                     IF( ORGATI ) THEN
                        C = W - DTIPSQ*DW + DELSQ*( Z( I )/DTISQ )**2
                     ELSE
                        C = W - DTISQ*DW - DELSQ*( Z( IP1 )/DTIPSQ )**2
                     END IF
                  ELSE
                     TEMP = Z( II ) / ( WORK( II )*DELTA( II ) )
                     IF( ORGATI ) THEN
                        DPSI = DPSI + TEMP*TEMP
                     ELSE
                        DPHI = DPHI + TEMP*TEMP
                     END IF
                     C = W - DTISQ*DPSI - DTIPSQ*DPHI
                  END IF
                  A = ( DTIPSQ+DTISQ )*W - DTIPSQ*DTISQ*DW
                  B = DTIPSQ*DTISQ*W
                  IF( C.EQ.ZERO ) THEN
                     IF( A.EQ.ZERO ) THEN
                        IF( .NOT.SWTCH ) THEN
                           IF( ORGATI ) THEN
                              A = Z( I )*Z( I ) + DTIPSQ*DTIPSQ*
     $                            ( DPSI+DPHI )
                           ELSE
                              A = Z( IP1 )*Z( IP1 ) +
     $                            DTISQ*DTISQ*( DPSI+DPHI )
                           END IF
                        ELSE
                           A = DTISQ*DTISQ*DPSI + DTIPSQ*DTIPSQ*DPHI
                        END IF
                     END IF
                     ETA = B / A
                  ELSE IF( A.LE.ZERO ) THEN
                     ETA = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
                  ELSE
                     ETA = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
                  END IF
               END IF
            END IF
*
*           Note, eta should be positive if w is negative, and
*           eta should be negative otherwise. However,
*           if for some reason caused by roundoff, eta*w > 0,
*           we simply use one Newton step instead. This way
*           will guarantee eta*w < 0.
*
            IF( W*ETA.GE.ZERO )
     $         ETA = -W / DW
*
            ETA = ETA / ( SIGMA+SQRT( SIGMA*SIGMA+ETA ) )
            TEMP=TAU+ETA
            IF( TEMP.GT.SGUB .OR. TEMP.LT.SGLB ) THEN
               IF( W.LT.ZERO ) THEN
                  ETA = ( SGUB-TAU ) / TWO
               ELSE
                  ETA = ( SGLB-TAU ) / TWO
               END IF
               IF( GEOMAVG ) THEN
                  IF( W .LT. ZERO ) THEN
                     IF( TAU .GT. ZERO ) THEN
                        ETA = SQRT(SGUB*TAU)-TAU
                     END IF
                  ELSE
                     IF( SGLB .GT. ZERO ) THEN
                        ETA = SQRT(SGLB*TAU)-TAU
                     END IF
                  END IF
               END IF
            END IF
*
            PREW = W
*
            TAU = TAU + ETA
            SIGMA = SIGMA + ETA
*
            DO 200 J = 1, N
               WORK( J ) = WORK( J ) + ETA
               DELTA( J ) = DELTA( J ) - ETA
  200       CONTINUE
*
*           Evaluate PSI and the derivative DPSI
*
            DPSI = ZERO
            PSI = ZERO
            ERRETM = ZERO
            DO 210 J = 1, IIM1
               TEMP = Z( J ) / ( WORK( J )*DELTA( J ) )
               PSI = PSI + Z( J )*TEMP
               DPSI = DPSI + TEMP*TEMP
               ERRETM = ERRETM + PSI
  210       CONTINUE
            ERRETM = ABS( ERRETM )
*
*           Evaluate PHI and the derivative DPHI
*
            DPHI = ZERO
            PHI = ZERO
            DO 220 J = N, IIP1, -1
               TEMP = Z( J ) / ( WORK( J )*DELTA( J ) )
               PHI = PHI + Z( J )*TEMP
               DPHI = DPHI + TEMP*TEMP
               ERRETM = ERRETM + PHI
  220       CONTINUE
*
            TAU2 = WORK( II )*DELTA( II )
            TEMP = Z( II ) / TAU2
            DW = DPSI + DPHI + TEMP*TEMP
            TEMP = Z( II )*TEMP
            W = RHOINV + PHI + PSI + TEMP
            ERRETM = EIGHT*( PHI-PSI ) + ERRETM + TWO*RHOINV
     $             + THREE*ABS( TEMP )
*    $             + ABS( TAU2 )*DW
*
            IF( W*PREW.GT.ZERO .AND. ABS( W ).GT.ABS( PREW ) / TEN )
     $         SWTCH = .NOT.SWTCH
*
  230    CONTINUE
*
*        Return with INFO = 1, NITER = MAXIT and not converged
*
         INFO = 1
*
      END IF
*
  240 CONTINUE
      RETURN
*
*     End of DLASD4
*
      END