summaryrefslogtreecommitdiff
path: root/SRC/dlarrk.f
blob: d0a2da59c99b1464153925b9f5690be4876e9dd7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
      SUBROUTINE DLARRK( N, IW, GL, GU,
     $                    D, E2, PIVMIN, RELTOL, W, WERR, INFO)
      IMPLICIT NONE
*
*  -- LAPACK auxiliary routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER   INFO, IW, N
      DOUBLE PRECISION    PIVMIN, RELTOL, GL, GU, W, WERR
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   D( * ), E2( * )
*     ..
*
*  Purpose
*  =======
*
*  DLARRK computes one eigenvalue of a symmetric tridiagonal
*  matrix T to suitable accuracy. This is an auxiliary code to be
*  called from DSTEMR.
*
*  To avoid overflow, the matrix must be scaled so that its
*  largest element is no greater than overflow**(1/2) *
*  underflow**(1/4) in absolute value, and for greatest
*  accuracy, it should not be much smaller than that.
*
*  See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
*  Matrix", Report CS41, Computer Science Dept., Stanford
*  University, July 21, 1966.
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The order of the tridiagonal matrix T.  N >= 0.
*
*  IW      (input) INTEGER
*          The index of the eigenvalues to be returned.
*
*  GL      (input) DOUBLE PRECISION
*  GU      (input) DOUBLE PRECISION
*          An upper and a lower bound on the eigenvalue.
*
*  D       (input) DOUBLE PRECISION array, dimension (N)
*          The n diagonal elements of the tridiagonal matrix T.
*
*  E2      (input) DOUBLE PRECISION array, dimension (N-1)
*          The (n-1) squared off-diagonal elements of the tridiagonal matrix T.
*
*  PIVMIN  (input) DOUBLE PRECISION
*          The minimum pivot allowed in the Sturm sequence for T.
*
*  RELTOL  (input) DOUBLE PRECISION
*          The minimum relative width of an interval.  When an interval
*          is narrower than RELTOL times the larger (in
*          magnitude) endpoint, then it is considered to be
*          sufficiently small, i.e., converged.  Note: this should
*          always be at least radix*machine epsilon.
*
*  W       (output) DOUBLE PRECISION
*
*  WERR    (output) DOUBLE PRECISION
*          The error bound on the corresponding eigenvalue approximation
*          in W.
*
*  INFO    (output) INTEGER
*          = 0:       Eigenvalue converged
*          = -1:      Eigenvalue did NOT converge
*
*  Internal Parameters
*  ===================
*
*  FUDGE   DOUBLE PRECISION, default = 2
*          A "fudge factor" to widen the Gershgorin intervals.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   FUDGE, HALF, TWO, ZERO
      PARAMETER          ( HALF = 0.5D0, TWO = 2.0D0,
     $                     FUDGE = TWO, ZERO = 0.0D0 )
*     ..
*     .. Local Scalars ..
      INTEGER   I, IT, ITMAX, NEGCNT
      DOUBLE PRECISION   ATOLI, EPS, LEFT, MID, RIGHT, RTOLI, TMP1,
     $                   TMP2, TNORM
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH
      EXTERNAL   DLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, INT, LOG, MAX
*     ..
*     .. Executable Statements ..
*
*     Get machine constants
      EPS = DLAMCH( 'P' )

      TNORM = MAX( ABS( GL ), ABS( GU ) )
      RTOLI = RELTOL
      ATOLI = FUDGE*TWO*PIVMIN

      ITMAX = INT( ( LOG( TNORM+PIVMIN )-LOG( PIVMIN ) ) /
     $           LOG( TWO ) ) + 2

      INFO = -1

      LEFT = GL - FUDGE*TNORM*EPS*N - FUDGE*TWO*PIVMIN
      RIGHT = GU + FUDGE*TNORM*EPS*N + FUDGE*TWO*PIVMIN
      IT = 0

 10   CONTINUE
*
*     Check if interval converged or maximum number of iterations reached
*
      TMP1 = ABS( RIGHT - LEFT )
      TMP2 = MAX( ABS(RIGHT), ABS(LEFT) )
      IF( TMP1.LT.MAX( ATOLI, PIVMIN, RTOLI*TMP2 ) ) THEN
         INFO = 0
         GOTO 30
      ENDIF
      IF(IT.GT.ITMAX)
     $   GOTO 30

*
*     Count number of negative pivots for mid-point
*
      IT = IT + 1
      MID = HALF * (LEFT + RIGHT)
      NEGCNT = 0
      TMP1 = D( 1 ) - MID
      IF( ABS( TMP1 ).LT.PIVMIN )
     $   TMP1 = -PIVMIN
      IF( TMP1.LE.ZERO )
     $   NEGCNT = NEGCNT + 1
*
      DO 20 I = 2, N
         TMP1 = D( I ) - E2( I-1 ) / TMP1 - MID
         IF( ABS( TMP1 ).LT.PIVMIN )
     $      TMP1 = -PIVMIN
         IF( TMP1.LE.ZERO )
     $      NEGCNT = NEGCNT + 1
 20   CONTINUE

      IF(NEGCNT.GE.IW) THEN
         RIGHT = MID
      ELSE
         LEFT = MID
      ENDIF
      GOTO 10

 30   CONTINUE
*
*     Converged or maximum number of iterations reached
*
      W = HALF * (LEFT + RIGHT)
      WERR = HALF * ABS( RIGHT - LEFT )

      RETURN
*
*     End of DLARRK
*
      END