summaryrefslogtreecommitdiff
path: root/SRC/dlarre.f
blob: 7963159fe4824c5d1f4c7aacf39a506689d5c091 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
*> \brief \b DLARRE
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> Download DLARRE + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarre.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarre.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarre.f"> 
*> [TXT]</a> 
*
*  Definition
*  ==========
*
*       SUBROUTINE DLARRE( RANGE, N, VL, VU, IL, IU, D, E, E2,
*                           RTOL1, RTOL2, SPLTOL, NSPLIT, ISPLIT, M,
*                           W, WERR, WGAP, IBLOCK, INDEXW, GERS, PIVMIN,
*                           WORK, IWORK, INFO )
* 
*       .. Scalar Arguments ..
*       CHARACTER          RANGE
*       INTEGER            IL, INFO, IU, M, N, NSPLIT
*       DOUBLE PRECISION  PIVMIN, RTOL1, RTOL2, SPLTOL, VL, VU
*       ..
*       .. Array Arguments ..
*       INTEGER            IBLOCK( * ), ISPLIT( * ), IWORK( * ),
*      $                   INDEXW( * )
*       DOUBLE PRECISION   D( * ), E( * ), E2( * ), GERS( * ),
*      $                   W( * ),WERR( * ), WGAP( * ), WORK( * )
*       ..
*  
*  Purpose
*  =======
*
*>\details \b Purpose:
*>\verbatim
*>
*> To find the desired eigenvalues of a given real symmetric
*> tridiagonal matrix T, DLARRE sets any "small" off-diagonal
*> elements to zero, and for each unreduced block T_i, it finds
*> (a) a suitable shift at one end of the block's spectrum,
*> (b) the base representation, T_i - sigma_i I = L_i D_i L_i^T, and
*> (c) eigenvalues of each L_i D_i L_i^T.
*> The representations and eigenvalues found are then used by
*> DSTEMR to compute the eigenvectors of T.
*> The accuracy varies depending on whether bisection is used to
*> find a few eigenvalues or the dqds algorithm (subroutine DLASQ2) to
*> conpute all and then discard any unwanted one.
*> As an added benefit, DLARRE also outputs the n
*> Gerschgorin intervals for the matrices L_i D_i L_i^T.
*>
*>\endverbatim
*
*  Arguments
*  =========
*
*> \param[in] RANGE
*> \verbatim
*>          RANGE is CHARACTER*1
*>          = 'A': ("All")   all eigenvalues will be found.
*>          = 'V': ("Value") all eigenvalues in the half-open interval
*>                           (VL, VU] will be found.
*>          = 'I': ("Index") the IL-th through IU-th eigenvalues (of the
*>                           entire matrix) will be found.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix. N > 0.
*> \endverbatim
*>
*> \param[in,out] VL
*> \verbatim
*>          VL is DOUBLE PRECISION
*> \endverbatim
*>
*> \param[in,out] VU
*> \verbatim
*>          VU is DOUBLE PRECISION
*>          If RANGE='V', the lower and upper bounds for the eigenvalues.
*>          Eigenvalues less than or equal to VL, or greater than VU,
*>          will not be returned.  VL < VU.
*>          If RANGE='I' or ='A', DLARRE computes bounds on the desired
*>          part of the spectrum.
*> \endverbatim
*>
*> \param[in] IL
*> \verbatim
*>          IL is INTEGER
*> \endverbatim
*>
*> \param[in] IU
*> \verbatim
*>          IU is INTEGER
*>          If RANGE='I', the indices (in ascending order) of the
*>          smallest and largest eigenvalues to be returned.
*>          1 <= IL <= IU <= N.
*> \endverbatim
*>
*> \param[in,out] D
*> \verbatim
*>          D is DOUBLE PRECISION array, dimension (N)
*>          On entry, the N diagonal elements of the tridiagonal
*>          matrix T.
*>          On exit, the N diagonal elements of the diagonal
*>          matrices D_i.
*> \endverbatim
*>
*> \param[in,out] E
*> \verbatim
*>          E is DOUBLE PRECISION array, dimension (N)
*>          On entry, the first (N-1) entries contain the subdiagonal
*>          elements of the tridiagonal matrix T; E(N) need not be set.
*>          On exit, E contains the subdiagonal elements of the unit
*>          bidiagonal matrices L_i. The entries E( ISPLIT( I ) ),
*>          1 <= I <= NSPLIT, contain the base points sigma_i on output.
*> \endverbatim
*>
*> \param[in,out] E2
*> \verbatim
*>          E2 is DOUBLE PRECISION array, dimension (N)
*>          On entry, the first (N-1) entries contain the SQUARES of the
*>          subdiagonal elements of the tridiagonal matrix T;
*>          E2(N) need not be set.
*>          On exit, the entries E2( ISPLIT( I ) ),
*>          1 <= I <= NSPLIT, have been set to zero
*> \endverbatim
*>
*> \param[in] RTOL1
*> \verbatim
*>          RTOL1 is DOUBLE PRECISION
*> \endverbatim
*>
*> \param[in] RTOL2
*> \verbatim
*>          RTOL2 is DOUBLE PRECISION
*>           Parameters for bisection.
*>           An interval [LEFT,RIGHT] has converged if
*>           RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
*> \endverbatim
*>
*> \param[in] SPLTOL
*> \verbatim
*>          SPLTOL is DOUBLE PRECISION
*>          The threshold for splitting.
*> \endverbatim
*>
*> \param[out] NSPLIT
*> \verbatim
*>          NSPLIT is INTEGER
*>          The number of blocks T splits into. 1 <= NSPLIT <= N.
*> \endverbatim
*>
*> \param[out] ISPLIT
*> \verbatim
*>          ISPLIT is INTEGER array, dimension (N)
*>          The splitting points, at which T breaks up into blocks.
*>          The first block consists of rows/columns 1 to ISPLIT(1),
*>          the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
*>          etc., and the NSPLIT-th consists of rows/columns
*>          ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
*> \endverbatim
*>
*> \param[out] M
*> \verbatim
*>          M is INTEGER
*>          The total number of eigenvalues (of all L_i D_i L_i^T)
*>          found.
*> \endverbatim
*>
*> \param[out] W
*> \verbatim
*>          W is DOUBLE PRECISION array, dimension (N)
*>          The first M elements contain the eigenvalues. The
*>          eigenvalues of each of the blocks, L_i D_i L_i^T, are
*>          sorted in ascending order ( DLARRE may use the
*>          remaining N-M elements as workspace).
*> \endverbatim
*>
*> \param[out] WERR
*> \verbatim
*>          WERR is DOUBLE PRECISION array, dimension (N)
*>          The error bound on the corresponding eigenvalue in W.
*> \endverbatim
*>
*> \param[out] WGAP
*> \verbatim
*>          WGAP is DOUBLE PRECISION array, dimension (N)
*>          The separation from the right neighbor eigenvalue in W.
*>          The gap is only with respect to the eigenvalues of the same block
*>          as each block has its own representation tree.
*>          Exception: at the right end of a block we store the left gap
*> \endverbatim
*>
*> \param[out] IBLOCK
*> \verbatim
*>          IBLOCK is INTEGER array, dimension (N)
*>          The indices of the blocks (submatrices) associated with the
*>          corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
*>          W(i) belongs to the first block from the top, =2 if W(i)
*>          belongs to the second block, etc.
*> \endverbatim
*>
*> \param[out] INDEXW
*> \verbatim
*>          INDEXW is INTEGER array, dimension (N)
*>          The indices of the eigenvalues within each block (submatrix);
*>          for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
*>          i-th eigenvalue W(i) is the 10-th eigenvalue in block 2
*> \endverbatim
*>
*> \param[out] GERS
*> \verbatim
*>          GERS is DOUBLE PRECISION array, dimension (2*N)
*>          The N Gerschgorin intervals (the i-th Gerschgorin interval
*>          is (GERS(2*i-1), GERS(2*i)).
*> \endverbatim
*>
*> \param[out] PIVMIN
*> \verbatim
*>          PIVMIN is DOUBLE PRECISION
*>          The minimum pivot in the Sturm sequence for T.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is DOUBLE PRECISION array, dimension (6*N)
*>          Workspace.
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*>          IWORK is INTEGER array, dimension (5*N)
*>          Workspace.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          > 0:  A problem occured in DLARRE.
*>          < 0:  One of the called subroutines signaled an internal problem.
*>                Needs inspection of the corresponding parameter IINFO
*>                for further information.
*> \endverbatim
*> \verbatim
*>          =-1:  Problem in DLARRD.
*>          = 2:  No base representation could be found in MAXTRY iterations.
*>                Increasing MAXTRY and recompilation might be a remedy.
*>          =-3:  Problem in DLARRB when computing the refined root
*>                representation for DLASQ2.
*>          =-4:  Problem in DLARRB when preforming bisection on the
*>                desired part of the spectrum.
*>          =-5:  Problem in DLASQ2.
*>          =-6:  Problem in DLASQ2.
*> \endverbatim
*>
*
*  Authors
*  =======
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup auxOTHERauxiliary
*
*
*  Further Details
*  ===============
*>\details \b Further \b Details
*> \verbatim
*  Further Details
*>  The base representations are required to suffer very little
*>  element growth and consequently define all their eigenvalues to
*>  high relative accuracy.
*>  ===============
*>
*>  Based on contributions by
*>     Beresford Parlett, University of California, Berkeley, USA
*>     Jim Demmel, University of California, Berkeley, USA
*>     Inderjit Dhillon, University of Texas, Austin, USA
*>     Osni Marques, LBNL/NERSC, USA
*>     Christof Voemel, University of California, Berkeley, USA
*>
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE DLARRE( RANGE, N, VL, VU, IL, IU, D, E, E2,
     $                    RTOL1, RTOL2, SPLTOL, NSPLIT, ISPLIT, M,
     $                    W, WERR, WGAP, IBLOCK, INDEXW, GERS, PIVMIN,
     $                    WORK, IWORK, INFO )
*
*  -- LAPACK auxiliary routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          RANGE
      INTEGER            IL, INFO, IU, M, N, NSPLIT
      DOUBLE PRECISION  PIVMIN, RTOL1, RTOL2, SPLTOL, VL, VU
*     ..
*     .. Array Arguments ..
      INTEGER            IBLOCK( * ), ISPLIT( * ), IWORK( * ),
     $                   INDEXW( * )
      DOUBLE PRECISION   D( * ), E( * ), E2( * ), GERS( * ),
     $                   W( * ),WERR( * ), WGAP( * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   FAC, FOUR, FOURTH, FUDGE, HALF, HNDRD,
     $                   MAXGROWTH, ONE, PERT, TWO, ZERO
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0,
     $                     TWO = 2.0D0, FOUR=4.0D0,
     $                     HNDRD = 100.0D0,
     $                     PERT = 8.0D0,
     $                     HALF = ONE/TWO, FOURTH = ONE/FOUR, FAC= HALF,
     $                     MAXGROWTH = 64.0D0, FUDGE = 2.0D0 )
      INTEGER            MAXTRY, ALLRNG, INDRNG, VALRNG
      PARAMETER          ( MAXTRY = 6, ALLRNG = 1, INDRNG = 2,
     $                     VALRNG = 3 )
*     ..
*     .. Local Scalars ..
      LOGICAL            FORCEB, NOREP, USEDQD
      INTEGER            CNT, CNT1, CNT2, I, IBEGIN, IDUM, IEND, IINFO,
     $                   IN, INDL, INDU, IRANGE, J, JBLK, MB, MM,
     $                   WBEGIN, WEND
      DOUBLE PRECISION   AVGAP, BSRTOL, CLWDTH, DMAX, DPIVOT, EABS,
     $                   EMAX, EOLD, EPS, GL, GU, ISLEFT, ISRGHT, RTL,
     $                   RTOL, S1, S2, SAFMIN, SGNDEF, SIGMA, SPDIAM,
     $                   TAU, TMP, TMP1


*     ..
*     .. Local Arrays ..
      INTEGER            ISEED( 4 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION            DLAMCH
      EXTERNAL           DLAMCH, LSAME

*     ..
*     .. External Subroutines ..
      EXTERNAL           DCOPY, DLARNV, DLARRA, DLARRB, DLARRC, DLARRD,
     $                   DLASQ2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN

*     ..
*     .. Executable Statements ..
*

      INFO = 0

*
*     Decode RANGE
*
      IF( LSAME( RANGE, 'A' ) ) THEN
         IRANGE = ALLRNG
      ELSE IF( LSAME( RANGE, 'V' ) ) THEN
         IRANGE = VALRNG
      ELSE IF( LSAME( RANGE, 'I' ) ) THEN
         IRANGE = INDRNG
      END IF

      M = 0

*     Get machine constants
      SAFMIN = DLAMCH( 'S' )
      EPS = DLAMCH( 'P' )

*     Set parameters
      RTL = SQRT(EPS)
      BSRTOL = SQRT(EPS)

*     Treat case of 1x1 matrix for quick return
      IF( N.EQ.1 ) THEN
         IF( (IRANGE.EQ.ALLRNG).OR.
     $       ((IRANGE.EQ.VALRNG).AND.(D(1).GT.VL).AND.(D(1).LE.VU)).OR.
     $       ((IRANGE.EQ.INDRNG).AND.(IL.EQ.1).AND.(IU.EQ.1)) ) THEN
            M = 1
            W(1) = D(1)
*           The computation error of the eigenvalue is zero
            WERR(1) = ZERO
            WGAP(1) = ZERO
            IBLOCK( 1 ) = 1
            INDEXW( 1 ) = 1
            GERS(1) = D( 1 )
            GERS(2) = D( 1 )
         ENDIF
*        store the shift for the initial RRR, which is zero in this case
         E(1) = ZERO
         RETURN
      END IF

*     General case: tridiagonal matrix of order > 1
*
*     Init WERR, WGAP. Compute Gerschgorin intervals and spectral diameter.
*     Compute maximum off-diagonal entry and pivmin.
      GL = D(1)
      GU = D(1)
      EOLD = ZERO
      EMAX = ZERO
      E(N) = ZERO
      DO 5 I = 1,N
         WERR(I) = ZERO
         WGAP(I) = ZERO
         EABS = ABS( E(I) )
         IF( EABS .GE. EMAX ) THEN
            EMAX = EABS
         END IF
         TMP1 = EABS + EOLD
         GERS( 2*I-1) = D(I) - TMP1
         GL =  MIN( GL, GERS( 2*I - 1))
         GERS( 2*I ) = D(I) + TMP1
         GU = MAX( GU, GERS(2*I) )
         EOLD  = EABS
 5    CONTINUE
*     The minimum pivot allowed in the Sturm sequence for T
      PIVMIN = SAFMIN * MAX( ONE, EMAX**2 )
*     Compute spectral diameter. The Gerschgorin bounds give an
*     estimate that is wrong by at most a factor of SQRT(2)
      SPDIAM = GU - GL

*     Compute splitting points
      CALL DLARRA( N, D, E, E2, SPLTOL, SPDIAM,
     $                    NSPLIT, ISPLIT, IINFO )

*     Can force use of bisection instead of faster DQDS.
*     Option left in the code for future multisection work.
      FORCEB = .FALSE.

*     Initialize USEDQD, DQDS should be used for ALLRNG unless someone
*     explicitly wants bisection.
      USEDQD = (( IRANGE.EQ.ALLRNG ) .AND. (.NOT.FORCEB))

      IF( (IRANGE.EQ.ALLRNG) .AND. (.NOT. FORCEB) ) THEN
*        Set interval [VL,VU] that contains all eigenvalues
         VL = GL
         VU = GU
      ELSE
*        We call DLARRD to find crude approximations to the eigenvalues
*        in the desired range. In case IRANGE = INDRNG, we also obtain the
*        interval (VL,VU] that contains all the wanted eigenvalues.
*        An interval [LEFT,RIGHT] has converged if
*        RIGHT-LEFT.LT.RTOL*MAX(ABS(LEFT),ABS(RIGHT))
*        DLARRD needs a WORK of size 4*N, IWORK of size 3*N
         CALL DLARRD( RANGE, 'B', N, VL, VU, IL, IU, GERS,
     $                    BSRTOL, D, E, E2, PIVMIN, NSPLIT, ISPLIT,
     $                    MM, W, WERR, VL, VU, IBLOCK, INDEXW,
     $                    WORK, IWORK, IINFO )
         IF( IINFO.NE.0 ) THEN
            INFO = -1
            RETURN
         ENDIF
*        Make sure that the entries M+1 to N in W, WERR, IBLOCK, INDEXW are 0
         DO 14 I = MM+1,N
            W( I ) = ZERO
            WERR( I ) = ZERO
            IBLOCK( I ) = 0
            INDEXW( I ) = 0
 14      CONTINUE
      END IF


***
*     Loop over unreduced blocks
      IBEGIN = 1
      WBEGIN = 1
      DO 170 JBLK = 1, NSPLIT
         IEND = ISPLIT( JBLK )
         IN = IEND - IBEGIN + 1

*        1 X 1 block
         IF( IN.EQ.1 ) THEN
            IF( (IRANGE.EQ.ALLRNG).OR.( (IRANGE.EQ.VALRNG).AND.
     $         ( D( IBEGIN ).GT.VL ).AND.( D( IBEGIN ).LE.VU ) )
     $        .OR. ( (IRANGE.EQ.INDRNG).AND.(IBLOCK(WBEGIN).EQ.JBLK))
     $        ) THEN
               M = M + 1
               W( M ) = D( IBEGIN )
               WERR(M) = ZERO
*              The gap for a single block doesn't matter for the later
*              algorithm and is assigned an arbitrary large value
               WGAP(M) = ZERO
               IBLOCK( M ) = JBLK
               INDEXW( M ) = 1
               WBEGIN = WBEGIN + 1
            ENDIF
*           E( IEND ) holds the shift for the initial RRR
            E( IEND ) = ZERO
            IBEGIN = IEND + 1
            GO TO 170
         END IF
*
*        Blocks of size larger than 1x1
*
*        E( IEND ) will hold the shift for the initial RRR, for now set it =0
         E( IEND ) = ZERO
*
*        Find local outer bounds GL,GU for the block
         GL = D(IBEGIN)
         GU = D(IBEGIN)
         DO 15 I = IBEGIN , IEND
            GL = MIN( GERS( 2*I-1 ), GL )
            GU = MAX( GERS( 2*I ), GU )
 15      CONTINUE
         SPDIAM = GU - GL

         IF(.NOT. ((IRANGE.EQ.ALLRNG).AND.(.NOT.FORCEB)) ) THEN
*           Count the number of eigenvalues in the current block.
            MB = 0
            DO 20 I = WBEGIN,MM
               IF( IBLOCK(I).EQ.JBLK ) THEN
                  MB = MB+1
               ELSE
                  GOTO 21
               ENDIF
 20         CONTINUE
 21         CONTINUE

            IF( MB.EQ.0) THEN
*              No eigenvalue in the current block lies in the desired range
*              E( IEND ) holds the shift for the initial RRR
               E( IEND ) = ZERO
               IBEGIN = IEND + 1
               GO TO 170
            ELSE

*              Decide whether dqds or bisection is more efficient
               USEDQD = ( (MB .GT. FAC*IN) .AND. (.NOT.FORCEB) )
               WEND = WBEGIN + MB - 1
*              Calculate gaps for the current block
*              In later stages, when representations for individual
*              eigenvalues are different, we use SIGMA = E( IEND ).
               SIGMA = ZERO
               DO 30 I = WBEGIN, WEND - 1
                  WGAP( I ) = MAX( ZERO,
     $                        W(I+1)-WERR(I+1) - (W(I)+WERR(I)) )
 30            CONTINUE
               WGAP( WEND ) = MAX( ZERO,
     $                     VU - SIGMA - (W( WEND )+WERR( WEND )))
*              Find local index of the first and last desired evalue.
               INDL = INDEXW(WBEGIN)
               INDU = INDEXW( WEND )
            ENDIF
         ENDIF
         IF(( (IRANGE.EQ.ALLRNG) .AND. (.NOT. FORCEB) ).OR.USEDQD) THEN
*           Case of DQDS
*           Find approximations to the extremal eigenvalues of the block
            CALL DLARRK( IN, 1, GL, GU, D(IBEGIN),
     $               E2(IBEGIN), PIVMIN, RTL, TMP, TMP1, IINFO )
            IF( IINFO.NE.0 ) THEN
               INFO = -1
               RETURN
            ENDIF
            ISLEFT = MAX(GL, TMP - TMP1
     $               - HNDRD * EPS* ABS(TMP - TMP1))

            CALL DLARRK( IN, IN, GL, GU, D(IBEGIN),
     $               E2(IBEGIN), PIVMIN, RTL, TMP, TMP1, IINFO )
            IF( IINFO.NE.0 ) THEN
               INFO = -1
               RETURN
            ENDIF
            ISRGHT = MIN(GU, TMP + TMP1
     $                 + HNDRD * EPS * ABS(TMP + TMP1))
*           Improve the estimate of the spectral diameter
            SPDIAM = ISRGHT - ISLEFT
         ELSE
*           Case of bisection
*           Find approximations to the wanted extremal eigenvalues
            ISLEFT = MAX(GL, W(WBEGIN) - WERR(WBEGIN)
     $                  - HNDRD * EPS*ABS(W(WBEGIN)- WERR(WBEGIN) ))
            ISRGHT = MIN(GU,W(WEND) + WERR(WEND)
     $                  + HNDRD * EPS * ABS(W(WEND)+ WERR(WEND)))
         ENDIF


*        Decide whether the base representation for the current block
*        L_JBLK D_JBLK L_JBLK^T = T_JBLK - sigma_JBLK I
*        should be on the left or the right end of the current block.
*        The strategy is to shift to the end which is "more populated"
*        Furthermore, decide whether to use DQDS for the computation of
*        the eigenvalue approximations at the end of DLARRE or bisection.
*        dqds is chosen if all eigenvalues are desired or the number of
*        eigenvalues to be computed is large compared to the blocksize.
         IF( ( IRANGE.EQ.ALLRNG ) .AND. (.NOT.FORCEB) ) THEN
*           If all the eigenvalues have to be computed, we use dqd
            USEDQD = .TRUE.
*           INDL is the local index of the first eigenvalue to compute
            INDL = 1
            INDU = IN
*           MB =  number of eigenvalues to compute
            MB = IN
            WEND = WBEGIN + MB - 1
*           Define 1/4 and 3/4 points of the spectrum
            S1 = ISLEFT + FOURTH * SPDIAM
            S2 = ISRGHT - FOURTH * SPDIAM
         ELSE
*           DLARRD has computed IBLOCK and INDEXW for each eigenvalue
*           approximation.
*           choose sigma
            IF( USEDQD ) THEN
               S1 = ISLEFT + FOURTH * SPDIAM
               S2 = ISRGHT - FOURTH * SPDIAM
            ELSE
               TMP = MIN(ISRGHT,VU) -  MAX(ISLEFT,VL)
               S1 =  MAX(ISLEFT,VL) + FOURTH * TMP
               S2 =  MIN(ISRGHT,VU) - FOURTH * TMP
            ENDIF
         ENDIF

*        Compute the negcount at the 1/4 and 3/4 points
         IF(MB.GT.1) THEN
            CALL DLARRC( 'T', IN, S1, S2, D(IBEGIN),
     $                    E(IBEGIN), PIVMIN, CNT, CNT1, CNT2, IINFO)
         ENDIF

         IF(MB.EQ.1) THEN
            SIGMA = GL
            SGNDEF = ONE
         ELSEIF( CNT1 - INDL .GE. INDU - CNT2 ) THEN
            IF( ( IRANGE.EQ.ALLRNG ) .AND. (.NOT.FORCEB) ) THEN
               SIGMA = MAX(ISLEFT,GL)
            ELSEIF( USEDQD ) THEN
*              use Gerschgorin bound as shift to get pos def matrix
*              for dqds
               SIGMA = ISLEFT
            ELSE
*              use approximation of the first desired eigenvalue of the
*              block as shift
               SIGMA = MAX(ISLEFT,VL)
            ENDIF
            SGNDEF = ONE
         ELSE
            IF( ( IRANGE.EQ.ALLRNG ) .AND. (.NOT.FORCEB) ) THEN
               SIGMA = MIN(ISRGHT,GU)
            ELSEIF( USEDQD ) THEN
*              use Gerschgorin bound as shift to get neg def matrix
*              for dqds
               SIGMA = ISRGHT
            ELSE
*              use approximation of the first desired eigenvalue of the
*              block as shift
               SIGMA = MIN(ISRGHT,VU)
            ENDIF
            SGNDEF = -ONE
         ENDIF


*        An initial SIGMA has been chosen that will be used for computing
*        T - SIGMA I = L D L^T
*        Define the increment TAU of the shift in case the initial shift
*        needs to be refined to obtain a factorization with not too much
*        element growth.
         IF( USEDQD ) THEN
*           The initial SIGMA was to the outer end of the spectrum
*           the matrix is definite and we need not retreat.
            TAU = SPDIAM*EPS*N + TWO*PIVMIN
            TAU = MAX( TAU,TWO*EPS*ABS(SIGMA) )
         ELSE
            IF(MB.GT.1) THEN
               CLWDTH = W(WEND) + WERR(WEND) - W(WBEGIN) - WERR(WBEGIN)
               AVGAP = ABS(CLWDTH / DBLE(WEND-WBEGIN))
               IF( SGNDEF.EQ.ONE ) THEN
                  TAU = HALF*MAX(WGAP(WBEGIN),AVGAP)
                  TAU = MAX(TAU,WERR(WBEGIN))
               ELSE
                  TAU = HALF*MAX(WGAP(WEND-1),AVGAP)
                  TAU = MAX(TAU,WERR(WEND))
               ENDIF
            ELSE
               TAU = WERR(WBEGIN)
            ENDIF
         ENDIF
*
         DO 80 IDUM = 1, MAXTRY
*           Compute L D L^T factorization of tridiagonal matrix T - sigma I.
*           Store D in WORK(1:IN), L in WORK(IN+1:2*IN), and reciprocals of
*           pivots in WORK(2*IN+1:3*IN)
            DPIVOT = D( IBEGIN ) - SIGMA
            WORK( 1 ) = DPIVOT
            DMAX = ABS( WORK(1) )
            J = IBEGIN
            DO 70 I = 1, IN - 1
               WORK( 2*IN+I ) = ONE / WORK( I )
               TMP = E( J )*WORK( 2*IN+I )
               WORK( IN+I ) = TMP
               DPIVOT = ( D( J+1 )-SIGMA ) - TMP*E( J )
               WORK( I+1 ) = DPIVOT
               DMAX = MAX( DMAX, ABS(DPIVOT) )
               J = J + 1
 70         CONTINUE
*           check for element growth
            IF( DMAX .GT. MAXGROWTH*SPDIAM ) THEN
               NOREP = .TRUE.
            ELSE
               NOREP = .FALSE.
            ENDIF
            IF( USEDQD .AND. .NOT.NOREP ) THEN
*              Ensure the definiteness of the representation
*              All entries of D (of L D L^T) must have the same sign
               DO 71 I = 1, IN
                  TMP = SGNDEF*WORK( I )
                  IF( TMP.LT.ZERO ) NOREP = .TRUE.
 71            CONTINUE
            ENDIF
            IF(NOREP) THEN
*              Note that in the case of IRANGE=ALLRNG, we use the Gerschgorin
*              shift which makes the matrix definite. So we should end up
*              here really only in the case of IRANGE = VALRNG or INDRNG.
               IF( IDUM.EQ.MAXTRY-1 ) THEN
                  IF( SGNDEF.EQ.ONE ) THEN
*                    The fudged Gerschgorin shift should succeed
                     SIGMA =
     $                    GL - FUDGE*SPDIAM*EPS*N - FUDGE*TWO*PIVMIN
                  ELSE
                     SIGMA =
     $                    GU + FUDGE*SPDIAM*EPS*N + FUDGE*TWO*PIVMIN
                  END IF
               ELSE
                  SIGMA = SIGMA - SGNDEF * TAU
                  TAU = TWO * TAU
               END IF
            ELSE
*              an initial RRR is found
               GO TO 83
            END IF
 80      CONTINUE
*        if the program reaches this point, no base representation could be
*        found in MAXTRY iterations.
         INFO = 2
         RETURN

 83      CONTINUE
*        At this point, we have found an initial base representation
*        T - SIGMA I = L D L^T with not too much element growth.
*        Store the shift.
         E( IEND ) = SIGMA
*        Store D and L.
         CALL DCOPY( IN, WORK, 1, D( IBEGIN ), 1 )
         CALL DCOPY( IN-1, WORK( IN+1 ), 1, E( IBEGIN ), 1 )


         IF(MB.GT.1 ) THEN
*
*           Perturb each entry of the base representation by a small
*           (but random) relative amount to overcome difficulties with
*           glued matrices.
*
            DO 122 I = 1, 4
               ISEED( I ) = 1
 122        CONTINUE

            CALL DLARNV(2, ISEED, 2*IN-1, WORK(1))
            DO 125 I = 1,IN-1
               D(IBEGIN+I-1) = D(IBEGIN+I-1)*(ONE+EPS*PERT*WORK(I))
               E(IBEGIN+I-1) = E(IBEGIN+I-1)*(ONE+EPS*PERT*WORK(IN+I))
 125        CONTINUE
            D(IEND) = D(IEND)*(ONE+EPS*FOUR*WORK(IN))
*
         ENDIF
*
*        Don't update the Gerschgorin intervals because keeping track
*        of the updates would be too much work in DLARRV.
*        We update W instead and use it to locate the proper Gerschgorin
*        intervals.

*        Compute the required eigenvalues of L D L' by bisection or dqds
         IF ( .NOT.USEDQD ) THEN
*           If DLARRD has been used, shift the eigenvalue approximations
*           according to their representation. This is necessary for
*           a uniform DLARRV since dqds computes eigenvalues of the
*           shifted representation. In DLARRV, W will always hold the
*           UNshifted eigenvalue approximation.
            DO 134 J=WBEGIN,WEND
               W(J) = W(J) - SIGMA
               WERR(J) = WERR(J) + ABS(W(J)) * EPS
 134        CONTINUE
*           call DLARRB to reduce eigenvalue error of the approximations
*           from DLARRD
            DO 135 I = IBEGIN, IEND-1
               WORK( I ) = D( I ) * E( I )**2
 135        CONTINUE
*           use bisection to find EV from INDL to INDU
            CALL DLARRB(IN, D(IBEGIN), WORK(IBEGIN),
     $                  INDL, INDU, RTOL1, RTOL2, INDL-1,
     $                  W(WBEGIN), WGAP(WBEGIN), WERR(WBEGIN),
     $                  WORK( 2*N+1 ), IWORK, PIVMIN, SPDIAM,
     $                  IN, IINFO )
            IF( IINFO .NE. 0 ) THEN
               INFO = -4
               RETURN
            END IF
*           DLARRB computes all gaps correctly except for the last one
*           Record distance to VU/GU
            WGAP( WEND ) = MAX( ZERO,
     $           ( VU-SIGMA ) - ( W( WEND ) + WERR( WEND ) ) )
            DO 138 I = INDL, INDU
               M = M + 1
               IBLOCK(M) = JBLK
               INDEXW(M) = I
 138        CONTINUE
         ELSE
*           Call dqds to get all eigs (and then possibly delete unwanted
*           eigenvalues).
*           Note that dqds finds the eigenvalues of the L D L^T representation
*           of T to high relative accuracy. High relative accuracy
*           might be lost when the shift of the RRR is subtracted to obtain
*           the eigenvalues of T. However, T is not guaranteed to define its
*           eigenvalues to high relative accuracy anyway.
*           Set RTOL to the order of the tolerance used in DLASQ2
*           This is an ESTIMATED error, the worst case bound is 4*N*EPS
*           which is usually too large and requires unnecessary work to be
*           done by bisection when computing the eigenvectors
            RTOL = LOG(DBLE(IN)) * FOUR * EPS
            J = IBEGIN
            DO 140 I = 1, IN - 1
               WORK( 2*I-1 ) = ABS( D( J ) )
               WORK( 2*I ) = E( J )*E( J )*WORK( 2*I-1 )
               J = J + 1
  140       CONTINUE
            WORK( 2*IN-1 ) = ABS( D( IEND ) )
            WORK( 2*IN ) = ZERO
            CALL DLASQ2( IN, WORK, IINFO )
            IF( IINFO .NE. 0 ) THEN
*              If IINFO = -5 then an index is part of a tight cluster
*              and should be changed. The index is in IWORK(1) and the
*              gap is in WORK(N+1)
               INFO = -5
               RETURN
            ELSE
*              Test that all eigenvalues are positive as expected
               DO 149 I = 1, IN
                  IF( WORK( I ).LT.ZERO ) THEN
                     INFO = -6
                     RETURN
                  ENDIF
 149           CONTINUE
            END IF
            IF( SGNDEF.GT.ZERO ) THEN
               DO 150 I = INDL, INDU
                  M = M + 1
                  W( M ) = WORK( IN-I+1 )
                  IBLOCK( M ) = JBLK
                  INDEXW( M ) = I
 150           CONTINUE
            ELSE
               DO 160 I = INDL, INDU
                  M = M + 1
                  W( M ) = -WORK( I )
                  IBLOCK( M ) = JBLK
                  INDEXW( M ) = I
 160           CONTINUE
            END IF

            DO 165 I = M - MB + 1, M
*              the value of RTOL below should be the tolerance in DLASQ2
               WERR( I ) = RTOL * ABS( W(I) )
 165        CONTINUE
            DO 166 I = M - MB + 1, M - 1
*              compute the right gap between the intervals
               WGAP( I ) = MAX( ZERO,
     $                          W(I+1)-WERR(I+1) - (W(I)+WERR(I)) )
 166        CONTINUE
            WGAP( M ) = MAX( ZERO,
     $           ( VU-SIGMA ) - ( W( M ) + WERR( M ) ) )
         END IF
*        proceed with next block
         IBEGIN = IEND + 1
         WBEGIN = WEND + 1
 170  CONTINUE
*

      RETURN
*
*     end of DLARRE
*
      END