summaryrefslogtreecommitdiff
path: root/SRC/dlarrc.f
blob: c99cf89d4d42871ac3d2742d207cf8fcc7e0ec61 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
*> \brief \b DLARRC computes the number of eigenvalues of the symmetric tridiagonal matrix.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLARRC + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarrc.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarrc.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarrc.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE DLARRC( JOBT, N, VL, VU, D, E, PIVMIN,
*                                   EIGCNT, LCNT, RCNT, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          JOBT
*       INTEGER            EIGCNT, INFO, LCNT, N, RCNT
*       DOUBLE PRECISION   PIVMIN, VL, VU
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   D( * ), E( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> Find the number of eigenvalues of the symmetric tridiagonal matrix T
*> that are in the interval (VL,VU] if JOBT = 'T', and of L D L^T
*> if JOBT = 'L'.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] JOBT
*> \verbatim
*>          JOBT is CHARACTER*1
*>          = 'T':  Compute Sturm count for matrix T.
*>          = 'L':  Compute Sturm count for matrix L D L^T.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix. N > 0.
*> \endverbatim
*>
*> \param[in] VL
*> \verbatim
*>          VL is DOUBLE PRECISION
*>          The lower bound for the eigenvalues.
*> \endverbatim
*>
*> \param[in] VU
*> \verbatim
*>          VU is DOUBLE PRECISION
*>          The upper bound for the eigenvalues.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*>          D is DOUBLE PRECISION array, dimension (N)
*>          JOBT = 'T': The N diagonal elements of the tridiagonal matrix T.
*>          JOBT = 'L': The N diagonal elements of the diagonal matrix D.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*>          E is DOUBLE PRECISION array, dimension (N)
*>          JOBT = 'T': The N-1 offdiagonal elements of the matrix T.
*>          JOBT = 'L': The N-1 offdiagonal elements of the matrix L.
*> \endverbatim
*>
*> \param[in] PIVMIN
*> \verbatim
*>          PIVMIN is DOUBLE PRECISION
*>          The minimum pivot in the Sturm sequence for T.
*> \endverbatim
*>
*> \param[out] EIGCNT
*> \verbatim
*>          EIGCNT is INTEGER
*>          The number of eigenvalues of the symmetric tridiagonal matrix T
*>          that are in the interval (VL,VU]
*> \endverbatim
*>
*> \param[out] LCNT
*> \verbatim
*>          LCNT is INTEGER
*> \endverbatim
*>
*> \param[out] RCNT
*> \verbatim
*>          RCNT is INTEGER
*>          The left and right negcounts of the interval.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date June 2016
*
*> \ingroup OTHERauxiliary
*
*> \par Contributors:
*  ==================
*>
*> Beresford Parlett, University of California, Berkeley, USA \n
*> Jim Demmel, University of California, Berkeley, USA \n
*> Inderjit Dhillon, University of Texas, Austin, USA \n
*> Osni Marques, LBNL/NERSC, USA \n
*> Christof Voemel, University of California, Berkeley, USA
*
*  =====================================================================
      SUBROUTINE DLARRC( JOBT, N, VL, VU, D, E, PIVMIN,
     $                            EIGCNT, LCNT, RCNT, INFO )
*
*  -- LAPACK auxiliary routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     June 2016
*
*     .. Scalar Arguments ..
      CHARACTER          JOBT
      INTEGER            EIGCNT, INFO, LCNT, N, RCNT
      DOUBLE PRECISION   PIVMIN, VL, VU
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   D( * ), E( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0D0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I
      LOGICAL            MATT
      DOUBLE PRECISION   LPIVOT, RPIVOT, SL, SU, TMP, TMP2

*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. Executable Statements ..
*
      INFO = 0
*
*     Quick return if possible
*
      IF( N.LE.0 ) THEN
         RETURN
      END IF
*
      LCNT = 0
      RCNT = 0
      EIGCNT = 0
      MATT = LSAME( JOBT, 'T' )


      IF (MATT) THEN
*        Sturm sequence count on T
         LPIVOT = D( 1 ) - VL
         RPIVOT = D( 1 ) - VU
         IF( LPIVOT.LE.ZERO ) THEN
            LCNT = LCNT + 1
         ENDIF
         IF( RPIVOT.LE.ZERO ) THEN
            RCNT = RCNT + 1
         ENDIF
         DO 10 I = 1, N-1
            TMP = E(I)**2
            LPIVOT = ( D( I+1 )-VL ) - TMP/LPIVOT
            RPIVOT = ( D( I+1 )-VU ) - TMP/RPIVOT
            IF( LPIVOT.LE.ZERO ) THEN
               LCNT = LCNT + 1
            ENDIF
            IF( RPIVOT.LE.ZERO ) THEN
               RCNT = RCNT + 1
            ENDIF
 10      CONTINUE
      ELSE
*        Sturm sequence count on L D L^T
         SL = -VL
         SU = -VU
         DO 20 I = 1, N - 1
            LPIVOT = D( I ) + SL
            RPIVOT = D( I ) + SU
            IF( LPIVOT.LE.ZERO ) THEN
               LCNT = LCNT + 1
            ENDIF
            IF( RPIVOT.LE.ZERO ) THEN
               RCNT = RCNT + 1
            ENDIF
            TMP = E(I) * D(I) * E(I)
*
            TMP2 = TMP / LPIVOT
            IF( TMP2.EQ.ZERO ) THEN
               SL =  TMP - VL
            ELSE
               SL = SL*TMP2 - VL
            END IF
*
            TMP2 = TMP / RPIVOT
            IF( TMP2.EQ.ZERO ) THEN
               SU =  TMP - VU
            ELSE
               SU = SU*TMP2 - VU
            END IF
 20      CONTINUE
         LPIVOT = D( N ) + SL
         RPIVOT = D( N ) + SU
         IF( LPIVOT.LE.ZERO ) THEN
            LCNT = LCNT + 1
         ENDIF
         IF( RPIVOT.LE.ZERO ) THEN
            RCNT = RCNT + 1
         ENDIF
      ENDIF
      EIGCNT = RCNT - LCNT

      RETURN
*
*     end of DLARRC
*
      END