summaryrefslogtreecommitdiff
path: root/SRC/dlarft.f
blob: fde95a06f8a4026e3288acf96e4539070df0e6ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
      SUBROUTINE DLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
      IMPLICIT NONE
*
*  -- LAPACK auxiliary routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          DIRECT, STOREV
      INTEGER            K, LDT, LDV, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   T( LDT, * ), TAU( * ), V( LDV, * )
*     ..
*
*  Purpose
*  =======
*
*  DLARFT forms the triangular factor T of a real block reflector H
*  of order n, which is defined as a product of k elementary reflectors.
*
*  If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
*
*  If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
*
*  If STOREV = 'C', the vector which defines the elementary reflector
*  H(i) is stored in the i-th column of the array V, and
*
*     H  =  I - V * T * V**T
*
*  If STOREV = 'R', the vector which defines the elementary reflector
*  H(i) is stored in the i-th row of the array V, and
*
*     H  =  I - V**T * T * V
*
*  Arguments
*  =========
*
*  DIRECT  (input) CHARACTER*1
*          Specifies the order in which the elementary reflectors are
*          multiplied to form the block reflector:
*          = 'F': H = H(1) H(2) . . . H(k) (Forward)
*          = 'B': H = H(k) . . . H(2) H(1) (Backward)
*
*  STOREV  (input) CHARACTER*1
*          Specifies how the vectors which define the elementary
*          reflectors are stored (see also Further Details):
*          = 'C': columnwise
*          = 'R': rowwise
*
*  N       (input) INTEGER
*          The order of the block reflector H. N >= 0.
*
*  K       (input) INTEGER
*          The order of the triangular factor T (= the number of
*          elementary reflectors). K >= 1.
*
*  V       (input/output) DOUBLE PRECISION array, dimension
*                               (LDV,K) if STOREV = 'C'
*                               (LDV,N) if STOREV = 'R'
*          The matrix V. See further details.
*
*  LDV     (input) INTEGER
*          The leading dimension of the array V.
*          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
*
*  TAU     (input) DOUBLE PRECISION array, dimension (K)
*          TAU(i) must contain the scalar factor of the elementary
*          reflector H(i).
*
*  T       (output) DOUBLE PRECISION array, dimension (LDT,K)
*          The k by k triangular factor T of the block reflector.
*          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
*          lower triangular. The rest of the array is not used.
*
*  LDT     (input) INTEGER
*          The leading dimension of the array T. LDT >= K.
*
*  Further Details
*  ===============
*
*  The shape of the matrix V and the storage of the vectors which define
*  the H(i) is best illustrated by the following example with n = 5 and
*  k = 3. The elements equal to 1 are not stored; the corresponding
*  array elements are modified but restored on exit. The rest of the
*  array is not used.
*
*  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':
*
*               V = (  1       )                 V = (  1 v1 v1 v1 v1 )
*                   ( v1  1    )                     (     1 v2 v2 v2 )
*                   ( v1 v2  1 )                     (        1 v3 v3 )
*                   ( v1 v2 v3 )
*                   ( v1 v2 v3 )
*
*  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':
*
*               V = ( v1 v2 v3 )                 V = ( v1 v1  1       )
*                   ( v1 v2 v3 )                     ( v2 v2 v2  1    )
*                   (  1 v2 v3 )                     ( v3 v3 v3 v3  1 )
*                   (     1 v3 )
*                   (        1 )
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J, PREVLASTV, LASTV
      DOUBLE PRECISION   VII
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGEMV, DTRMV
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      IF( LSAME( DIRECT, 'F' ) ) THEN
         PREVLASTV = N
         DO 20 I = 1, K
            PREVLASTV = MAX( I, PREVLASTV )
            IF( TAU( I ).EQ.ZERO ) THEN
*
*              H(i)  =  I
*
               DO 10 J = 1, I
                  T( J, I ) = ZERO
   10          CONTINUE
            ELSE
*
*              general case
*
               VII = V( I, I )
               V( I, I ) = ONE
               IF( LSAME( STOREV, 'C' ) ) THEN
!                 Skip any trailing zeros.
                  DO LASTV = N, I+1, -1
                     IF( V( LASTV, I ).NE.ZERO ) EXIT
                  END DO
                  J = MIN( LASTV, PREVLASTV )
*
*                 T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**T * V(i:j,i)
*
                  CALL DGEMV( 'Transpose', J-I+1, I-1, -TAU( I ),
     $                        V( I, 1 ), LDV, V( I, I ), 1, ZERO,
     $                        T( 1, I ), 1 )
               ELSE
!                 Skip any trailing zeros.
                  DO LASTV = N, I+1, -1
                     IF( V( I, LASTV ).NE.ZERO ) EXIT
                  END DO
                  J = MIN( LASTV, PREVLASTV )
*
*                 T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**T
*
                  CALL DGEMV( 'No transpose', I-1, J-I+1, -TAU( I ),
     $                        V( 1, I ), LDV, V( I, I ), LDV, ZERO,
     $                        T( 1, I ), 1 )
               END IF
               V( I, I ) = VII
*
*              T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i)
*
               CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T,
     $                     LDT, T( 1, I ), 1 )
               T( I, I ) = TAU( I )
               IF( I.GT.1 ) THEN
                  PREVLASTV = MAX( PREVLASTV, LASTV )
               ELSE
                  PREVLASTV = LASTV
               END IF
            END IF
   20    CONTINUE
      ELSE
         PREVLASTV = 1
         DO 40 I = K, 1, -1
            IF( TAU( I ).EQ.ZERO ) THEN
*
*              H(i)  =  I
*
               DO 30 J = I, K
                  T( J, I ) = ZERO
   30          CONTINUE
            ELSE
*
*              general case
*
               IF( I.LT.K ) THEN
                  IF( LSAME( STOREV, 'C' ) ) THEN
                     VII = V( N-K+I, I )
                     V( N-K+I, I ) = ONE
!                    Skip any leading zeros.
                     DO LASTV = 1, I-1
                        IF( V( LASTV, I ).NE.ZERO ) EXIT
                     END DO
                     J = MAX( LASTV, PREVLASTV )
*
*                    T(i+1:k,i) :=
*                            - tau(i) * V(j:n-k+i,i+1:k)**T * V(j:n-k+i,i)
*
                     CALL DGEMV( 'Transpose', N-K+I-J+1, K-I, -TAU( I ),
     $                           V( J, I+1 ), LDV, V( J, I ), 1, ZERO,
     $                           T( I+1, I ), 1 )
                     V( N-K+I, I ) = VII
                  ELSE
                     VII = V( I, N-K+I )
                     V( I, N-K+I ) = ONE
!                    Skip any leading zeros.
                     DO LASTV = 1, I-1
                        IF( V( I, LASTV ).NE.ZERO ) EXIT
                     END DO
                     J = MAX( LASTV, PREVLASTV )
*
*                    T(i+1:k,i) :=
*                            - tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**T
*
                     CALL DGEMV( 'No transpose', K-I, N-K+I-J+1,
     $                    -TAU( I ), V( I+1, J ), LDV, V( I, J ), LDV,
     $                    ZERO, T( I+1, I ), 1 )
                     V( I, N-K+I ) = VII
                  END IF
*
*                 T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i)
*
                  CALL DTRMV( 'Lower', 'No transpose', 'Non-unit', K-I,
     $                        T( I+1, I+1 ), LDT, T( I+1, I ), 1 )
                  IF( I.GT.1 ) THEN
                     PREVLASTV = MIN( PREVLASTV, LASTV )
                  ELSE
                     PREVLASTV = LASTV
                  END IF
               END IF
               T( I, I ) = TAU( I )
            END IF
   40    CONTINUE
      END IF
      RETURN
*
*     End of DLARFT
*
      END