1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
|
SUBROUTINE DLARFP( N, ALPHA, X, INCX, TAU )
*
* -- LAPACK auxiliary routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* .. Scalar Arguments ..
INTEGER INCX, N
DOUBLE PRECISION ALPHA, TAU
* ..
* .. Array Arguments ..
DOUBLE PRECISION X( * )
* ..
*
* Purpose
* =======
*
* DLARFP generates a real elementary reflector H of order n, such
* that
*
* H * ( alpha ) = ( beta ), H' * H = I.
* ( x ) ( 0 )
*
* where alpha and beta are scalars, beta is non-negative, and x is
* an (n-1)-element real vector. H is represented in the form
*
* H = I - tau * ( 1 ) * ( 1 v' ) ,
* ( v )
*
* where tau is a real scalar and v is a real (n-1)-element
* vector.
*
* If the elements of x are all zero, then tau = 0 and H is taken to be
* the unit matrix.
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the elementary reflector.
*
* ALPHA (input/output) DOUBLE PRECISION
* On entry, the value alpha.
* On exit, it is overwritten with the value beta.
*
* X (input/output) DOUBLE PRECISION array, dimension
* (1+(N-2)*abs(INCX))
* On entry, the vector x.
* On exit, it is overwritten with the vector v.
*
* INCX (input) INTEGER
* The increment between elements of X. INCX > 0.
*
* TAU (output) DOUBLE PRECISION
* The value tau.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION TWO, ONE, ZERO
PARAMETER ( TWO = 2.0D+0, ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
INTEGER J, KNT
DOUBLE PRECISION BETA, BIGNUM, SAVEALPHA, SMLNUM, XNORM
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, DLAPY2, DNRM2
EXTERNAL DLAMCH, DLAPY2, DNRM2
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, SIGN
* ..
* .. External Subroutines ..
EXTERNAL DSCAL
* ..
* .. Executable Statements ..
*
IF( N.LE.0 ) THEN
TAU = ZERO
RETURN
END IF
*
XNORM = DNRM2( N-1, X, INCX )
*
IF( XNORM.EQ.ZERO ) THEN
*
* H = [+/-1, 0; I], sign chosen so ALPHA >= 0
*
IF( ALPHA.GE.ZERO ) THEN
* When TAU.eq.ZERO, the vector is special-cased to be
* all zeros in the application routines. We do not need
* to clear it.
TAU = ZERO
ELSE
* However, the application routines rely on explicit
* zero checks when TAU.ne.ZERO, and we must clear X.
TAU = TWO
DO J = 1, N-1
X( 1 + (J-1)*INCX ) = 0
END DO
ALPHA = -ALPHA
END IF
ELSE
*
* general case
*
BETA = SIGN( DLAPY2( ALPHA, XNORM ), ALPHA )
SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'E' )
KNT = 0
IF( ABS( BETA ).LT.SMLNUM ) THEN
*
* XNORM, BETA may be inaccurate; scale X and recompute them
*
BIGNUM = ONE / SMLNUM
10 CONTINUE
KNT = KNT + 1
CALL DSCAL( N-1, BIGNUM, X, INCX )
BETA = BETA*BIGNUM
ALPHA = ALPHA*BIGNUM
IF( ABS( BETA ).LT.SMLNUM )
$ GO TO 10
*
* New BETA is at most 1, at least SMLNUM
*
XNORM = DNRM2( N-1, X, INCX )
BETA = SIGN( DLAPY2( ALPHA, XNORM ), ALPHA )
END IF
SAVEALPHA = ALPHA
ALPHA = ALPHA + BETA
IF( BETA.LT.ZERO ) THEN
BETA = -BETA
TAU = -ALPHA / BETA
ELSE
ALPHA = XNORM * (XNORM/ALPHA)
TAU = ALPHA / BETA
ALPHA = -ALPHA
END IF
*
IF ( ABS(TAU).LE.SMLNUM ) THEN
*
* In the case where the computed TAU ends up being a denormalized number,
* it loses relative accuracy. This is a BIG problem. Solution: flush TAU
* to ZERO. This explains the next IF statement.
*
* (Bug report provided by Pat Quillen from MathWorks on Jul 29, 2009.)
* (Thanks Pat. Thanks MathWorks.)
*
IF( SAVEALPHA.GE.ZERO ) THEN
TAU = ZERO
ELSE
TAU = TWO
DO J = 1, N-1
X( 1 + (J-1)*INCX ) = 0
END DO
BETA = -SAVEALPHA
END IF
*
ELSE
*
* This is the general case.
*
CALL DSCAL( N-1, ONE / ALPHA, X, INCX )
*
END IF
*
* If BETA is subnormal, it may lose relative accuracy
*
DO 20 J = 1, KNT
BETA = BETA*SMLNUM
20 CONTINUE
ALPHA = BETA
END IF
*
RETURN
*
* End of DLARFP
*
END
|