summaryrefslogtreecommitdiff
path: root/SRC/dlalsa.f
blob: 728804969dc05b5aae66256b2148f0fef91e2d79 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
*> \brief \b DLALSA computes the SVD of the coefficient matrix in compact form. Used by sgelsd.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLALSA + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlalsa.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlalsa.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlalsa.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE DLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U,
*                          LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR,
*                          GIVCOL, LDGCOL, PERM, GIVNUM, C, S, WORK,
*                          IWORK, INFO )
*
*       .. Scalar Arguments ..
*       INTEGER            ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS,
*      $                   SMLSIZ
*       ..
*       .. Array Arguments ..
*       INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
*      $                   K( * ), PERM( LDGCOL, * )
*       DOUBLE PRECISION   B( LDB, * ), BX( LDBX, * ), C( * ),
*      $                   DIFL( LDU, * ), DIFR( LDU, * ),
*      $                   GIVNUM( LDU, * ), POLES( LDU, * ), S( * ),
*      $                   U( LDU, * ), VT( LDU, * ), WORK( * ),
*      $                   Z( LDU, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DLALSA is an itermediate step in solving the least squares problem
*> by computing the SVD of the coefficient matrix in compact form (The
*> singular vectors are computed as products of simple orthorgonal
*> matrices.).
*>
*> If ICOMPQ = 0, DLALSA applies the inverse of the left singular vector
*> matrix of an upper bidiagonal matrix to the right hand side; and if
*> ICOMPQ = 1, DLALSA applies the right singular vector matrix to the
*> right hand side. The singular vector matrices were generated in
*> compact form by DLALSA.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] ICOMPQ
*> \verbatim
*>          ICOMPQ is INTEGER
*>         Specifies whether the left or the right singular vector
*>         matrix is involved.
*>         = 0: Left singular vector matrix
*>         = 1: Right singular vector matrix
*> \endverbatim
*>
*> \param[in] SMLSIZ
*> \verbatim
*>          SMLSIZ is INTEGER
*>         The maximum size of the subproblems at the bottom of the
*>         computation tree.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>         The row and column dimensions of the upper bidiagonal matrix.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>         The number of columns of B and BX. NRHS must be at least 1.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is DOUBLE PRECISION array, dimension ( LDB, NRHS )
*>         On input, B contains the right hand sides of the least
*>         squares problem in rows 1 through M.
*>         On output, B contains the solution X in rows 1 through N.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>         The leading dimension of B in the calling subprogram.
*>         LDB must be at least max(1,MAX( M, N ) ).
*> \endverbatim
*>
*> \param[out] BX
*> \verbatim
*>          BX is DOUBLE PRECISION array, dimension ( LDBX, NRHS )
*>         On exit, the result of applying the left or right singular
*>         vector matrix to B.
*> \endverbatim
*>
*> \param[in] LDBX
*> \verbatim
*>          LDBX is INTEGER
*>         The leading dimension of BX.
*> \endverbatim
*>
*> \param[in] U
*> \verbatim
*>          U is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ).
*>         On entry, U contains the left singular vector matrices of all
*>         subproblems at the bottom level.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*>          LDU is INTEGER, LDU = > N.
*>         The leading dimension of arrays U, VT, DIFL, DIFR,
*>         POLES, GIVNUM, and Z.
*> \endverbatim
*>
*> \param[in] VT
*> \verbatim
*>          VT is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ).
*>         On entry, VT**T contains the right singular vector matrices of
*>         all subproblems at the bottom level.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*>          K is INTEGER array, dimension ( N ).
*> \endverbatim
*>
*> \param[in] DIFL
*> \verbatim
*>          DIFL is DOUBLE PRECISION array, dimension ( LDU, NLVL ).
*>         where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.
*> \endverbatim
*>
*> \param[in] DIFR
*> \verbatim
*>          DIFR is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
*>         On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record
*>         distances between singular values on the I-th level and
*>         singular values on the (I -1)-th level, and DIFR(*, 2 * I)
*>         record the normalizing factors of the right singular vectors
*>         matrices of subproblems on I-th level.
*> \endverbatim
*>
*> \param[in] Z
*> \verbatim
*>          Z is DOUBLE PRECISION array, dimension ( LDU, NLVL ).
*>         On entry, Z(1, I) contains the components of the deflation-
*>         adjusted updating row vector for subproblems on the I-th
*>         level.
*> \endverbatim
*>
*> \param[in] POLES
*> \verbatim
*>          POLES is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
*>         On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old
*>         singular values involved in the secular equations on the I-th
*>         level.
*> \endverbatim
*>
*> \param[in] GIVPTR
*> \verbatim
*>          GIVPTR is INTEGER array, dimension ( N ).
*>         On entry, GIVPTR( I ) records the number of Givens
*>         rotations performed on the I-th problem on the computation
*>         tree.
*> \endverbatim
*>
*> \param[in] GIVCOL
*> \verbatim
*>          GIVCOL is INTEGER array, dimension ( LDGCOL, 2 * NLVL ).
*>         On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the
*>         locations of Givens rotations performed on the I-th level on
*>         the computation tree.
*> \endverbatim
*>
*> \param[in] LDGCOL
*> \verbatim
*>          LDGCOL is INTEGER, LDGCOL = > N.
*>         The leading dimension of arrays GIVCOL and PERM.
*> \endverbatim
*>
*> \param[in] PERM
*> \verbatim
*>          PERM is INTEGER array, dimension ( LDGCOL, NLVL ).
*>         On entry, PERM(*, I) records permutations done on the I-th
*>         level of the computation tree.
*> \endverbatim
*>
*> \param[in] GIVNUM
*> \verbatim
*>          GIVNUM is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
*>         On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S-
*>         values of Givens rotations performed on the I-th level on the
*>         computation tree.
*> \endverbatim
*>
*> \param[in] C
*> \verbatim
*>          C is DOUBLE PRECISION array, dimension ( N ).
*>         On entry, if the I-th subproblem is not square,
*>         C( I ) contains the C-value of a Givens rotation related to
*>         the right null space of the I-th subproblem.
*> \endverbatim
*>
*> \param[in] S
*> \verbatim
*>          S is DOUBLE PRECISION array, dimension ( N ).
*>         On entry, if the I-th subproblem is not square,
*>         S( I ) contains the S-value of a Givens rotation related to
*>         the right null space of the I-th subproblem.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*>          IWORK is INTEGER array, dimension (3*N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit.
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup doubleOTHERcomputational
*
*> \par Contributors:
*  ==================
*>
*>     Ming Gu and Ren-Cang Li, Computer Science Division, University of
*>       California at Berkeley, USA \n
*>     Osni Marques, LBNL/NERSC, USA \n
*
*  =====================================================================
      SUBROUTINE DLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U,
     $                   LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR,
     $                   GIVCOL, LDGCOL, PERM, GIVNUM, C, S, WORK,
     $                   IWORK, INFO )
*
*  -- LAPACK computational routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      INTEGER            ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS,
     $                   SMLSIZ
*     ..
*     .. Array Arguments ..
      INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
     $                   K( * ), PERM( LDGCOL, * )
      DOUBLE PRECISION   B( LDB, * ), BX( LDBX, * ), C( * ),
     $                   DIFL( LDU, * ), DIFR( LDU, * ),
     $                   GIVNUM( LDU, * ), POLES( LDU, * ), S( * ),
     $                   U( LDU, * ), VT( LDU, * ), WORK( * ),
     $                   Z( LDU, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, I1, IC, IM1, INODE, J, LF, LL, LVL, LVL2,
     $                   ND, NDB1, NDIML, NDIMR, NL, NLF, NLP1, NLVL,
     $                   NR, NRF, NRP1, SQRE
*     ..
*     .. External Subroutines ..
      EXTERNAL           DCOPY, DGEMM, DLALS0, DLASDT, XERBLA
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
*
      IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
         INFO = -1
      ELSE IF( SMLSIZ.LT.3 ) THEN
         INFO = -2
      ELSE IF( N.LT.SMLSIZ ) THEN
         INFO = -3
      ELSE IF( NRHS.LT.1 ) THEN
         INFO = -4
      ELSE IF( LDB.LT.N ) THEN
         INFO = -6
      ELSE IF( LDBX.LT.N ) THEN
         INFO = -8
      ELSE IF( LDU.LT.N ) THEN
         INFO = -10
      ELSE IF( LDGCOL.LT.N ) THEN
         INFO = -19
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DLALSA', -INFO )
         RETURN
      END IF
*
*     Book-keeping and  setting up the computation tree.
*
      INODE = 1
      NDIML = INODE + N
      NDIMR = NDIML + N
*
      CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
     $             IWORK( NDIMR ), SMLSIZ )
*
*     The following code applies back the left singular vector factors.
*     For applying back the right singular vector factors, go to 50.
*
      IF( ICOMPQ.EQ.1 ) THEN
         GO TO 50
      END IF
*
*     The nodes on the bottom level of the tree were solved
*     by DLASDQ. The corresponding left and right singular vector
*     matrices are in explicit form. First apply back the left
*     singular vector matrices.
*
      NDB1 = ( ND+1 ) / 2
      DO 10 I = NDB1, ND
*
*        IC : center row of each node
*        NL : number of rows of left  subproblem
*        NR : number of rows of right subproblem
*        NLF: starting row of the left   subproblem
*        NRF: starting row of the right  subproblem
*
         I1 = I - 1
         IC = IWORK( INODE+I1 )
         NL = IWORK( NDIML+I1 )
         NR = IWORK( NDIMR+I1 )
         NLF = IC - NL
         NRF = IC + 1
         CALL DGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU,
     $               B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )
         CALL DGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU,
     $               B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
   10 CONTINUE
*
*     Next copy the rows of B that correspond to unchanged rows
*     in the bidiagonal matrix to BX.
*
      DO 20 I = 1, ND
         IC = IWORK( INODE+I-1 )
         CALL DCOPY( NRHS, B( IC, 1 ), LDB, BX( IC, 1 ), LDBX )
   20 CONTINUE
*
*     Finally go through the left singular vector matrices of all
*     the other subproblems bottom-up on the tree.
*
      J = 2**NLVL
      SQRE = 0
*
      DO 40 LVL = NLVL, 1, -1
         LVL2 = 2*LVL - 1
*
*        find the first node LF and last node LL on
*        the current level LVL
*
         IF( LVL.EQ.1 ) THEN
            LF = 1
            LL = 1
         ELSE
            LF = 2**( LVL-1 )
            LL = 2*LF - 1
         END IF
         DO 30 I = LF, LL
            IM1 = I - 1
            IC = IWORK( INODE+IM1 )
            NL = IWORK( NDIML+IM1 )
            NR = IWORK( NDIMR+IM1 )
            NLF = IC - NL
            NRF = IC + 1
            J = J - 1
            CALL DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, BX( NLF, 1 ), LDBX,
     $                   B( NLF, 1 ), LDB, PERM( NLF, LVL ),
     $                   GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
     $                   GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ),
     $                   DIFL( NLF, LVL ), DIFR( NLF, LVL2 ),
     $                   Z( NLF, LVL ), K( J ), C( J ), S( J ), WORK,
     $                   INFO )
   30    CONTINUE
   40 CONTINUE
      GO TO 90
*
*     ICOMPQ = 1: applying back the right singular vector factors.
*
   50 CONTINUE
*
*     First now go through the right singular vector matrices of all
*     the tree nodes top-down.
*
      J = 0
      DO 70 LVL = 1, NLVL
         LVL2 = 2*LVL - 1
*
*        Find the first node LF and last node LL on
*        the current level LVL.
*
         IF( LVL.EQ.1 ) THEN
            LF = 1
            LL = 1
         ELSE
            LF = 2**( LVL-1 )
            LL = 2*LF - 1
         END IF
         DO 60 I = LL, LF, -1
            IM1 = I - 1
            IC = IWORK( INODE+IM1 )
            NL = IWORK( NDIML+IM1 )
            NR = IWORK( NDIMR+IM1 )
            NLF = IC - NL
            NRF = IC + 1
            IF( I.EQ.LL ) THEN
               SQRE = 0
            ELSE
               SQRE = 1
            END IF
            J = J + 1
            CALL DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B( NLF, 1 ), LDB,
     $                   BX( NLF, 1 ), LDBX, PERM( NLF, LVL ),
     $                   GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
     $                   GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ),
     $                   DIFL( NLF, LVL ), DIFR( NLF, LVL2 ),
     $                   Z( NLF, LVL ), K( J ), C( J ), S( J ), WORK,
     $                   INFO )
   60    CONTINUE
   70 CONTINUE
*
*     The nodes on the bottom level of the tree were solved
*     by DLASDQ. The corresponding right singular vector
*     matrices are in explicit form. Apply them back.
*
      NDB1 = ( ND+1 ) / 2
      DO 80 I = NDB1, ND
         I1 = I - 1
         IC = IWORK( INODE+I1 )
         NL = IWORK( NDIML+I1 )
         NR = IWORK( NDIMR+I1 )
         NLP1 = NL + 1
         IF( I.EQ.ND ) THEN
            NRP1 = NR
         ELSE
            NRP1 = NR + 1
         END IF
         NLF = IC - NL
         NRF = IC + 1
         CALL DGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU,
     $               B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )
         CALL DGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU,
     $               B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
   80 CONTINUE
*
   90 CONTINUE
*
      RETURN
*
*     End of DLALSA
*
      END