summaryrefslogtreecommitdiff
path: root/SRC/dlaln2.f
blob: a094b737bd84de60481d30376b0ef73993dbfa9b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
*> \brief \b DLALN2 solves a 1-by-1 or 2-by-2 linear system of equations of the specified form.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLALN2 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaln2.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaln2.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaln2.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE DLALN2( LTRANS, NA, NW, SMIN, CA, A, LDA, D1, D2, B,
*                          LDB, WR, WI, X, LDX, SCALE, XNORM, INFO )
*
*       .. Scalar Arguments ..
*       LOGICAL            LTRANS
*       INTEGER            INFO, LDA, LDB, LDX, NA, NW
*       DOUBLE PRECISION   CA, D1, D2, SCALE, SMIN, WI, WR, XNORM
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), X( LDX, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DLALN2 solves a system of the form  (ca A - w D ) X = s B
*> or (ca A**T - w D) X = s B   with possible scaling ("s") and
*> perturbation of A.  (A**T means A-transpose.)
*>
*> A is an NA x NA real matrix, ca is a real scalar, D is an NA x NA
*> real diagonal matrix, w is a real or complex value, and X and B are
*> NA x 1 matrices -- real if w is real, complex if w is complex.  NA
*> may be 1 or 2.
*>
*> If w is complex, X and B are represented as NA x 2 matrices,
*> the first column of each being the real part and the second
*> being the imaginary part.
*>
*> "s" is a scaling factor (.LE. 1), computed by DLALN2, which is
*> so chosen that X can be computed without overflow.  X is further
*> scaled if necessary to assure that norm(ca A - w D)*norm(X) is less
*> than overflow.
*>
*> If both singular values of (ca A - w D) are less than SMIN,
*> SMIN*identity will be used instead of (ca A - w D).  If only one
*> singular value is less than SMIN, one element of (ca A - w D) will be
*> perturbed enough to make the smallest singular value roughly SMIN.
*> If both singular values are at least SMIN, (ca A - w D) will not be
*> perturbed.  In any case, the perturbation will be at most some small
*> multiple of max( SMIN, ulp*norm(ca A - w D) ).  The singular values
*> are computed by infinity-norm approximations, and thus will only be
*> correct to a factor of 2 or so.
*>
*> Note: all input quantities are assumed to be smaller than overflow
*> by a reasonable factor.  (See BIGNUM.)
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] LTRANS
*> \verbatim
*>          LTRANS is LOGICAL
*>          =.TRUE.:  A-transpose will be used.
*>          =.FALSE.: A will be used (not transposed.)
*> \endverbatim
*>
*> \param[in] NA
*> \verbatim
*>          NA is INTEGER
*>          The size of the matrix A.  It may (only) be 1 or 2.
*> \endverbatim
*>
*> \param[in] NW
*> \verbatim
*>          NW is INTEGER
*>          1 if "w" is real, 2 if "w" is complex.  It may only be 1
*>          or 2.
*> \endverbatim
*>
*> \param[in] SMIN
*> \verbatim
*>          SMIN is DOUBLE PRECISION
*>          The desired lower bound on the singular values of A.  This
*>          should be a safe distance away from underflow or overflow,
*>          say, between (underflow/machine precision) and  (machine
*>          precision * overflow ).  (See BIGNUM and ULP.)
*> \endverbatim
*>
*> \param[in] CA
*> \verbatim
*>          CA is DOUBLE PRECISION
*>          The coefficient c, which A is multiplied by.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is DOUBLE PRECISION array, dimension (LDA,NA)
*>          The NA x NA matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of A.  It must be at least NA.
*> \endverbatim
*>
*> \param[in] D1
*> \verbatim
*>          D1 is DOUBLE PRECISION
*>          The 1,1 element in the diagonal matrix D.
*> \endverbatim
*>
*> \param[in] D2
*> \verbatim
*>          D2 is DOUBLE PRECISION
*>          The 2,2 element in the diagonal matrix D.  Not used if NA=1.
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*>          B is DOUBLE PRECISION array, dimension (LDB,NW)
*>          The NA x NW matrix B (right-hand side).  If NW=2 ("w" is
*>          complex), column 1 contains the real part of B and column 2
*>          contains the imaginary part.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of B.  It must be at least NA.
*> \endverbatim
*>
*> \param[in] WR
*> \verbatim
*>          WR is DOUBLE PRECISION
*>          The real part of the scalar "w".
*> \endverbatim
*>
*> \param[in] WI
*> \verbatim
*>          WI is DOUBLE PRECISION
*>          The imaginary part of the scalar "w".  Not used if NW=1.
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*>          X is DOUBLE PRECISION array, dimension (LDX,NW)
*>          The NA x NW matrix X (unknowns), as computed by DLALN2.
*>          If NW=2 ("w" is complex), on exit, column 1 will contain
*>          the real part of X and column 2 will contain the imaginary
*>          part.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*>          LDX is INTEGER
*>          The leading dimension of X.  It must be at least NA.
*> \endverbatim
*>
*> \param[out] SCALE
*> \verbatim
*>          SCALE is DOUBLE PRECISION
*>          The scale factor that B must be multiplied by to insure
*>          that overflow does not occur when computing X.  Thus,
*>          (ca A - w D) X  will be SCALE*B, not B (ignoring
*>          perturbations of A.)  It will be at most 1.
*> \endverbatim
*>
*> \param[out] XNORM
*> \verbatim
*>          XNORM is DOUBLE PRECISION
*>          The infinity-norm of X, when X is regarded as an NA x NW
*>          real matrix.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          An error flag.  It will be set to zero if no error occurs,
*>          a negative number if an argument is in error, or a positive
*>          number if  ca A - w D  had to be perturbed.
*>          The possible values are:
*>          = 0: No error occurred, and (ca A - w D) did not have to be
*>                 perturbed.
*>          = 1: (ca A - w D) had to be perturbed to make its smallest
*>               (or only) singular value greater than SMIN.
*>          NOTE: In the interests of speed, this routine does not
*>                check the inputs for errors.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup doubleOTHERauxiliary
*
*  =====================================================================
      SUBROUTINE DLALN2( LTRANS, NA, NW, SMIN, CA, A, LDA, D1, D2, B,
     $                   LDB, WR, WI, X, LDX, SCALE, XNORM, INFO )
*
*  -- LAPACK auxiliary routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      LOGICAL            LTRANS
      INTEGER            INFO, LDA, LDB, LDX, NA, NW
      DOUBLE PRECISION   CA, D1, D2, SCALE, SMIN, WI, WR, XNORM
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), X( LDX, * )
*     ..
*
* =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
      DOUBLE PRECISION   TWO
      PARAMETER          ( TWO = 2.0D0 )
*     ..
*     .. Local Scalars ..
      INTEGER            ICMAX, J
      DOUBLE PRECISION   BBND, BI1, BI2, BIGNUM, BNORM, BR1, BR2, CI21,
     $                   CI22, CMAX, CNORM, CR21, CR22, CSI, CSR, LI21,
     $                   LR21, SMINI, SMLNUM, TEMP, U22ABS, UI11, UI11R,
     $                   UI12, UI12S, UI22, UR11, UR11R, UR12, UR12S,
     $                   UR22, XI1, XI2, XR1, XR2
*     ..
*     .. Local Arrays ..
      LOGICAL            RSWAP( 4 ), ZSWAP( 4 )
      INTEGER            IPIVOT( 4, 4 )
      DOUBLE PRECISION   CI( 2, 2 ), CIV( 4 ), CR( 2, 2 ), CRV( 4 )
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLADIV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX
*     ..
*     .. Equivalences ..
      EQUIVALENCE        ( CI( 1, 1 ), CIV( 1 ) ),
     $                   ( CR( 1, 1 ), CRV( 1 ) )
*     ..
*     .. Data statements ..
      DATA               ZSWAP / .FALSE., .FALSE., .TRUE., .TRUE. /
      DATA               RSWAP / .FALSE., .TRUE., .FALSE., .TRUE. /
      DATA               IPIVOT / 1, 2, 3, 4, 2, 1, 4, 3, 3, 4, 1, 2, 4,
     $                   3, 2, 1 /
*     ..
*     .. Executable Statements ..
*
*     Compute BIGNUM
*
      SMLNUM = TWO*DLAMCH( 'Safe minimum' )
      BIGNUM = ONE / SMLNUM
      SMINI = MAX( SMIN, SMLNUM )
*
*     Don't check for input errors
*
      INFO = 0
*
*     Standard Initializations
*
      SCALE = ONE
*
      IF( NA.EQ.1 ) THEN
*
*        1 x 1  (i.e., scalar) system   C X = B
*
         IF( NW.EQ.1 ) THEN
*
*           Real 1x1 system.
*
*           C = ca A - w D
*
            CSR = CA*A( 1, 1 ) - WR*D1
            CNORM = ABS( CSR )
*
*           If | C | < SMINI, use C = SMINI
*
            IF( CNORM.LT.SMINI ) THEN
               CSR = SMINI
               CNORM = SMINI
               INFO = 1
            END IF
*
*           Check scaling for  X = B / C
*
            BNORM = ABS( B( 1, 1 ) )
            IF( CNORM.LT.ONE .AND. BNORM.GT.ONE ) THEN
               IF( BNORM.GT.BIGNUM*CNORM )
     $            SCALE = ONE / BNORM
            END IF
*
*           Compute X
*
            X( 1, 1 ) = ( B( 1, 1 )*SCALE ) / CSR
            XNORM = ABS( X( 1, 1 ) )
         ELSE
*
*           Complex 1x1 system (w is complex)
*
*           C = ca A - w D
*
            CSR = CA*A( 1, 1 ) - WR*D1
            CSI = -WI*D1
            CNORM = ABS( CSR ) + ABS( CSI )
*
*           If | C | < SMINI, use C = SMINI
*
            IF( CNORM.LT.SMINI ) THEN
               CSR = SMINI
               CSI = ZERO
               CNORM = SMINI
               INFO = 1
            END IF
*
*           Check scaling for  X = B / C
*
            BNORM = ABS( B( 1, 1 ) ) + ABS( B( 1, 2 ) )
            IF( CNORM.LT.ONE .AND. BNORM.GT.ONE ) THEN
               IF( BNORM.GT.BIGNUM*CNORM )
     $            SCALE = ONE / BNORM
            END IF
*
*           Compute X
*
            CALL DLADIV( SCALE*B( 1, 1 ), SCALE*B( 1, 2 ), CSR, CSI,
     $                   X( 1, 1 ), X( 1, 2 ) )
            XNORM = ABS( X( 1, 1 ) ) + ABS( X( 1, 2 ) )
         END IF
*
      ELSE
*
*        2x2 System
*
*        Compute the real part of  C = ca A - w D  (or  ca A**T - w D )
*
         CR( 1, 1 ) = CA*A( 1, 1 ) - WR*D1
         CR( 2, 2 ) = CA*A( 2, 2 ) - WR*D2
         IF( LTRANS ) THEN
            CR( 1, 2 ) = CA*A( 2, 1 )
            CR( 2, 1 ) = CA*A( 1, 2 )
         ELSE
            CR( 2, 1 ) = CA*A( 2, 1 )
            CR( 1, 2 ) = CA*A( 1, 2 )
         END IF
*
         IF( NW.EQ.1 ) THEN
*
*           Real 2x2 system  (w is real)
*
*           Find the largest element in C
*
            CMAX = ZERO
            ICMAX = 0
*
            DO 10 J = 1, 4
               IF( ABS( CRV( J ) ).GT.CMAX ) THEN
                  CMAX = ABS( CRV( J ) )
                  ICMAX = J
               END IF
   10       CONTINUE
*
*           If norm(C) < SMINI, use SMINI*identity.
*
            IF( CMAX.LT.SMINI ) THEN
               BNORM = MAX( ABS( B( 1, 1 ) ), ABS( B( 2, 1 ) ) )
               IF( SMINI.LT.ONE .AND. BNORM.GT.ONE ) THEN
                  IF( BNORM.GT.BIGNUM*SMINI )
     $               SCALE = ONE / BNORM
               END IF
               TEMP = SCALE / SMINI
               X( 1, 1 ) = TEMP*B( 1, 1 )
               X( 2, 1 ) = TEMP*B( 2, 1 )
               XNORM = TEMP*BNORM
               INFO = 1
               RETURN
            END IF
*
*           Gaussian elimination with complete pivoting.
*
            UR11 = CRV( ICMAX )
            CR21 = CRV( IPIVOT( 2, ICMAX ) )
            UR12 = CRV( IPIVOT( 3, ICMAX ) )
            CR22 = CRV( IPIVOT( 4, ICMAX ) )
            UR11R = ONE / UR11
            LR21 = UR11R*CR21
            UR22 = CR22 - UR12*LR21
*
*           If smaller pivot < SMINI, use SMINI
*
            IF( ABS( UR22 ).LT.SMINI ) THEN
               UR22 = SMINI
               INFO = 1
            END IF
            IF( RSWAP( ICMAX ) ) THEN
               BR1 = B( 2, 1 )
               BR2 = B( 1, 1 )
            ELSE
               BR1 = B( 1, 1 )
               BR2 = B( 2, 1 )
            END IF
            BR2 = BR2 - LR21*BR1
            BBND = MAX( ABS( BR1*( UR22*UR11R ) ), ABS( BR2 ) )
            IF( BBND.GT.ONE .AND. ABS( UR22 ).LT.ONE ) THEN
               IF( BBND.GE.BIGNUM*ABS( UR22 ) )
     $            SCALE = ONE / BBND
            END IF
*
            XR2 = ( BR2*SCALE ) / UR22
            XR1 = ( SCALE*BR1 )*UR11R - XR2*( UR11R*UR12 )
            IF( ZSWAP( ICMAX ) ) THEN
               X( 1, 1 ) = XR2
               X( 2, 1 ) = XR1
            ELSE
               X( 1, 1 ) = XR1
               X( 2, 1 ) = XR2
            END IF
            XNORM = MAX( ABS( XR1 ), ABS( XR2 ) )
*
*           Further scaling if  norm(A) norm(X) > overflow
*
            IF( XNORM.GT.ONE .AND. CMAX.GT.ONE ) THEN
               IF( XNORM.GT.BIGNUM / CMAX ) THEN
                  TEMP = CMAX / BIGNUM
                  X( 1, 1 ) = TEMP*X( 1, 1 )
                  X( 2, 1 ) = TEMP*X( 2, 1 )
                  XNORM = TEMP*XNORM
                  SCALE = TEMP*SCALE
               END IF
            END IF
         ELSE
*
*           Complex 2x2 system  (w is complex)
*
*           Find the largest element in C
*
            CI( 1, 1 ) = -WI*D1
            CI( 2, 1 ) = ZERO
            CI( 1, 2 ) = ZERO
            CI( 2, 2 ) = -WI*D2
            CMAX = ZERO
            ICMAX = 0
*
            DO 20 J = 1, 4
               IF( ABS( CRV( J ) )+ABS( CIV( J ) ).GT.CMAX ) THEN
                  CMAX = ABS( CRV( J ) ) + ABS( CIV( J ) )
                  ICMAX = J
               END IF
   20       CONTINUE
*
*           If norm(C) < SMINI, use SMINI*identity.
*
            IF( CMAX.LT.SMINI ) THEN
               BNORM = MAX( ABS( B( 1, 1 ) )+ABS( B( 1, 2 ) ),
     $                 ABS( B( 2, 1 ) )+ABS( B( 2, 2 ) ) )
               IF( SMINI.LT.ONE .AND. BNORM.GT.ONE ) THEN
                  IF( BNORM.GT.BIGNUM*SMINI )
     $               SCALE = ONE / BNORM
               END IF
               TEMP = SCALE / SMINI
               X( 1, 1 ) = TEMP*B( 1, 1 )
               X( 2, 1 ) = TEMP*B( 2, 1 )
               X( 1, 2 ) = TEMP*B( 1, 2 )
               X( 2, 2 ) = TEMP*B( 2, 2 )
               XNORM = TEMP*BNORM
               INFO = 1
               RETURN
            END IF
*
*           Gaussian elimination with complete pivoting.
*
            UR11 = CRV( ICMAX )
            UI11 = CIV( ICMAX )
            CR21 = CRV( IPIVOT( 2, ICMAX ) )
            CI21 = CIV( IPIVOT( 2, ICMAX ) )
            UR12 = CRV( IPIVOT( 3, ICMAX ) )
            UI12 = CIV( IPIVOT( 3, ICMAX ) )
            CR22 = CRV( IPIVOT( 4, ICMAX ) )
            CI22 = CIV( IPIVOT( 4, ICMAX ) )
            IF( ICMAX.EQ.1 .OR. ICMAX.EQ.4 ) THEN
*
*              Code when off-diagonals of pivoted C are real
*
               IF( ABS( UR11 ).GT.ABS( UI11 ) ) THEN
                  TEMP = UI11 / UR11
                  UR11R = ONE / ( UR11*( ONE+TEMP**2 ) )
                  UI11R = -TEMP*UR11R
               ELSE
                  TEMP = UR11 / UI11
                  UI11R = -ONE / ( UI11*( ONE+TEMP**2 ) )
                  UR11R = -TEMP*UI11R
               END IF
               LR21 = CR21*UR11R
               LI21 = CR21*UI11R
               UR12S = UR12*UR11R
               UI12S = UR12*UI11R
               UR22 = CR22 - UR12*LR21
               UI22 = CI22 - UR12*LI21
            ELSE
*
*              Code when diagonals of pivoted C are real
*
               UR11R = ONE / UR11
               UI11R = ZERO
               LR21 = CR21*UR11R
               LI21 = CI21*UR11R
               UR12S = UR12*UR11R
               UI12S = UI12*UR11R
               UR22 = CR22 - UR12*LR21 + UI12*LI21
               UI22 = -UR12*LI21 - UI12*LR21
            END IF
            U22ABS = ABS( UR22 ) + ABS( UI22 )
*
*           If smaller pivot < SMINI, use SMINI
*
            IF( U22ABS.LT.SMINI ) THEN
               UR22 = SMINI
               UI22 = ZERO
               INFO = 1
            END IF
            IF( RSWAP( ICMAX ) ) THEN
               BR2 = B( 1, 1 )
               BR1 = B( 2, 1 )
               BI2 = B( 1, 2 )
               BI1 = B( 2, 2 )
            ELSE
               BR1 = B( 1, 1 )
               BR2 = B( 2, 1 )
               BI1 = B( 1, 2 )
               BI2 = B( 2, 2 )
            END IF
            BR2 = BR2 - LR21*BR1 + LI21*BI1
            BI2 = BI2 - LI21*BR1 - LR21*BI1
            BBND = MAX( ( ABS( BR1 )+ABS( BI1 ) )*
     $             ( U22ABS*( ABS( UR11R )+ABS( UI11R ) ) ),
     $             ABS( BR2 )+ABS( BI2 ) )
            IF( BBND.GT.ONE .AND. U22ABS.LT.ONE ) THEN
               IF( BBND.GE.BIGNUM*U22ABS ) THEN
                  SCALE = ONE / BBND
                  BR1 = SCALE*BR1
                  BI1 = SCALE*BI1
                  BR2 = SCALE*BR2
                  BI2 = SCALE*BI2
               END IF
            END IF
*
            CALL DLADIV( BR2, BI2, UR22, UI22, XR2, XI2 )
            XR1 = UR11R*BR1 - UI11R*BI1 - UR12S*XR2 + UI12S*XI2
            XI1 = UI11R*BR1 + UR11R*BI1 - UI12S*XR2 - UR12S*XI2
            IF( ZSWAP( ICMAX ) ) THEN
               X( 1, 1 ) = XR2
               X( 2, 1 ) = XR1
               X( 1, 2 ) = XI2
               X( 2, 2 ) = XI1
            ELSE
               X( 1, 1 ) = XR1
               X( 2, 1 ) = XR2
               X( 1, 2 ) = XI1
               X( 2, 2 ) = XI2
            END IF
            XNORM = MAX( ABS( XR1 )+ABS( XI1 ), ABS( XR2 )+ABS( XI2 ) )
*
*           Further scaling if  norm(A) norm(X) > overflow
*
            IF( XNORM.GT.ONE .AND. CMAX.GT.ONE ) THEN
               IF( XNORM.GT.BIGNUM / CMAX ) THEN
                  TEMP = CMAX / BIGNUM
                  X( 1, 1 ) = TEMP*X( 1, 1 )
                  X( 2, 1 ) = TEMP*X( 2, 1 )
                  X( 1, 2 ) = TEMP*X( 1, 2 )
                  X( 2, 2 ) = TEMP*X( 2, 2 )
                  XNORM = TEMP*XNORM
                  SCALE = TEMP*SCALE
               END IF
            END IF
         END IF
      END IF
*
      RETURN
*
*     End of DLALN2
*
      END