1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
|
*> \brief \b DLAGTS solves the system of equations (T-λI)x = y or (T-λI)Tx = y,where T is a general tridiagonal matrix and λ a scalar, using the LU factorization computed by slagtf.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLAGTS + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlagts.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlagts.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlagts.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DLAGTS( JOB, N, A, B, C, D, IN, Y, TOL, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, JOB, N
* DOUBLE PRECISION TOL
* ..
* .. Array Arguments ..
* INTEGER IN( * )
* DOUBLE PRECISION A( * ), B( * ), C( * ), D( * ), Y( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLAGTS may be used to solve one of the systems of equations
*>
*> (T - lambda*I)*x = y or (T - lambda*I)**T*x = y,
*>
*> where T is an n by n tridiagonal matrix, for x, following the
*> factorization of (T - lambda*I) as
*>
*> (T - lambda*I) = P*L*U ,
*>
*> by routine DLAGTF. The choice of equation to be solved is
*> controlled by the argument JOB, and in each case there is an option
*> to perturb zero or very small diagonal elements of U, this option
*> being intended for use in applications such as inverse iteration.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] JOB
*> \verbatim
*> JOB is INTEGER
*> Specifies the job to be performed by DLAGTS as follows:
*> = 1: The equations (T - lambda*I)x = y are to be solved,
*> but diagonal elements of U are not to be perturbed.
*> = -1: The equations (T - lambda*I)x = y are to be solved
*> and, if overflow would otherwise occur, the diagonal
*> elements of U are to be perturbed. See argument TOL
*> below.
*> = 2: The equations (T - lambda*I)**Tx = y are to be solved,
*> but diagonal elements of U are not to be perturbed.
*> = -2: The equations (T - lambda*I)**Tx = y are to be solved
*> and, if overflow would otherwise occur, the diagonal
*> elements of U are to be perturbed. See argument TOL
*> below.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix T.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (N)
*> On entry, A must contain the diagonal elements of U as
*> returned from DLAGTF.
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is DOUBLE PRECISION array, dimension (N-1)
*> On entry, B must contain the first super-diagonal elements of
*> U as returned from DLAGTF.
*> \endverbatim
*>
*> \param[in] C
*> \verbatim
*> C is DOUBLE PRECISION array, dimension (N-1)
*> On entry, C must contain the sub-diagonal elements of L as
*> returned from DLAGTF.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is DOUBLE PRECISION array, dimension (N-2)
*> On entry, D must contain the second super-diagonal elements
*> of U as returned from DLAGTF.
*> \endverbatim
*>
*> \param[in] IN
*> \verbatim
*> IN is INTEGER array, dimension (N)
*> On entry, IN must contain details of the matrix P as returned
*> from DLAGTF.
*> \endverbatim
*>
*> \param[in,out] Y
*> \verbatim
*> Y is DOUBLE PRECISION array, dimension (N)
*> On entry, the right hand side vector y.
*> On exit, Y is overwritten by the solution vector x.
*> \endverbatim
*>
*> \param[in,out] TOL
*> \verbatim
*> TOL is DOUBLE PRECISION
*> On entry, with JOB .lt. 0, TOL should be the minimum
*> perturbation to be made to very small diagonal elements of U.
*> TOL should normally be chosen as about eps*norm(U), where eps
*> is the relative machine precision, but if TOL is supplied as
*> non-positive, then it is reset to eps*max( abs( u(i,j) ) ).
*> If JOB .gt. 0 then TOL is not referenced.
*>
*> On exit, TOL is changed as described above, only if TOL is
*> non-positive on entry. Otherwise TOL is unchanged.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0 : successful exit
*> .lt. 0: if INFO = -i, the i-th argument had an illegal value
*> .gt. 0: overflow would occur when computing the INFO(th)
*> element of the solution vector x. This can only occur
*> when JOB is supplied as positive and either means
*> that a diagonal element of U is very small, or that
*> the elements of the right-hand side vector y are very
*> large.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup OTHERauxiliary
*
* =====================================================================
SUBROUTINE DLAGTS( JOB, N, A, B, C, D, IN, Y, TOL, INFO )
*
* -- LAPACK auxiliary routine (version 3.7.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* December 2016
*
* .. Scalar Arguments ..
INTEGER INFO, JOB, N
DOUBLE PRECISION TOL
* ..
* .. Array Arguments ..
INTEGER IN( * )
DOUBLE PRECISION A( * ), B( * ), C( * ), D( * ), Y( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
INTEGER K
DOUBLE PRECISION ABSAK, AK, BIGNUM, EPS, PERT, SFMIN, TEMP
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, SIGN
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Executable Statements ..
*
INFO = 0
IF( ( ABS( JOB ).GT.2 ) .OR. ( JOB.EQ.0 ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DLAGTS', -INFO )
RETURN
END IF
*
IF( N.EQ.0 )
$ RETURN
*
EPS = DLAMCH( 'Epsilon' )
SFMIN = DLAMCH( 'Safe minimum' )
BIGNUM = ONE / SFMIN
*
IF( JOB.LT.0 ) THEN
IF( TOL.LE.ZERO ) THEN
TOL = ABS( A( 1 ) )
IF( N.GT.1 )
$ TOL = MAX( TOL, ABS( A( 2 ) ), ABS( B( 1 ) ) )
DO 10 K = 3, N
TOL = MAX( TOL, ABS( A( K ) ), ABS( B( K-1 ) ),
$ ABS( D( K-2 ) ) )
10 CONTINUE
TOL = TOL*EPS
IF( TOL.EQ.ZERO )
$ TOL = EPS
END IF
END IF
*
IF( ABS( JOB ).EQ.1 ) THEN
DO 20 K = 2, N
IF( IN( K-1 ).EQ.0 ) THEN
Y( K ) = Y( K ) - C( K-1 )*Y( K-1 )
ELSE
TEMP = Y( K-1 )
Y( K-1 ) = Y( K )
Y( K ) = TEMP - C( K-1 )*Y( K )
END IF
20 CONTINUE
IF( JOB.EQ.1 ) THEN
DO 30 K = N, 1, -1
IF( K.LE.N-2 ) THEN
TEMP = Y( K ) - B( K )*Y( K+1 ) - D( K )*Y( K+2 )
ELSE IF( K.EQ.N-1 ) THEN
TEMP = Y( K ) - B( K )*Y( K+1 )
ELSE
TEMP = Y( K )
END IF
AK = A( K )
ABSAK = ABS( AK )
IF( ABSAK.LT.ONE ) THEN
IF( ABSAK.LT.SFMIN ) THEN
IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
$ THEN
INFO = K
RETURN
ELSE
TEMP = TEMP*BIGNUM
AK = AK*BIGNUM
END IF
ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
INFO = K
RETURN
END IF
END IF
Y( K ) = TEMP / AK
30 CONTINUE
ELSE
DO 50 K = N, 1, -1
IF( K.LE.N-2 ) THEN
TEMP = Y( K ) - B( K )*Y( K+1 ) - D( K )*Y( K+2 )
ELSE IF( K.EQ.N-1 ) THEN
TEMP = Y( K ) - B( K )*Y( K+1 )
ELSE
TEMP = Y( K )
END IF
AK = A( K )
PERT = SIGN( TOL, AK )
40 CONTINUE
ABSAK = ABS( AK )
IF( ABSAK.LT.ONE ) THEN
IF( ABSAK.LT.SFMIN ) THEN
IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
$ THEN
AK = AK + PERT
PERT = 2*PERT
GO TO 40
ELSE
TEMP = TEMP*BIGNUM
AK = AK*BIGNUM
END IF
ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
AK = AK + PERT
PERT = 2*PERT
GO TO 40
END IF
END IF
Y( K ) = TEMP / AK
50 CONTINUE
END IF
ELSE
*
* Come to here if JOB = 2 or -2
*
IF( JOB.EQ.2 ) THEN
DO 60 K = 1, N
IF( K.GE.3 ) THEN
TEMP = Y( K ) - B( K-1 )*Y( K-1 ) - D( K-2 )*Y( K-2 )
ELSE IF( K.EQ.2 ) THEN
TEMP = Y( K ) - B( K-1 )*Y( K-1 )
ELSE
TEMP = Y( K )
END IF
AK = A( K )
ABSAK = ABS( AK )
IF( ABSAK.LT.ONE ) THEN
IF( ABSAK.LT.SFMIN ) THEN
IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
$ THEN
INFO = K
RETURN
ELSE
TEMP = TEMP*BIGNUM
AK = AK*BIGNUM
END IF
ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
INFO = K
RETURN
END IF
END IF
Y( K ) = TEMP / AK
60 CONTINUE
ELSE
DO 80 K = 1, N
IF( K.GE.3 ) THEN
TEMP = Y( K ) - B( K-1 )*Y( K-1 ) - D( K-2 )*Y( K-2 )
ELSE IF( K.EQ.2 ) THEN
TEMP = Y( K ) - B( K-1 )*Y( K-1 )
ELSE
TEMP = Y( K )
END IF
AK = A( K )
PERT = SIGN( TOL, AK )
70 CONTINUE
ABSAK = ABS( AK )
IF( ABSAK.LT.ONE ) THEN
IF( ABSAK.LT.SFMIN ) THEN
IF( ABSAK.EQ.ZERO .OR. ABS( TEMP )*SFMIN.GT.ABSAK )
$ THEN
AK = AK + PERT
PERT = 2*PERT
GO TO 70
ELSE
TEMP = TEMP*BIGNUM
AK = AK*BIGNUM
END IF
ELSE IF( ABS( TEMP ).GT.ABSAK*BIGNUM ) THEN
AK = AK + PERT
PERT = 2*PERT
GO TO 70
END IF
END IF
Y( K ) = TEMP / AK
80 CONTINUE
END IF
*
DO 90 K = N, 2, -1
IF( IN( K-1 ).EQ.0 ) THEN
Y( K-1 ) = Y( K-1 ) - C( K-1 )*Y( K )
ELSE
TEMP = Y( K-1 )
Y( K-1 ) = Y( K )
Y( K ) = TEMP - C( K-1 )*Y( K )
END IF
90 CONTINUE
END IF
*
* End of DLAGTS
*
END
|