summaryrefslogtreecommitdiff
path: root/SRC/dlaed3.f
blob: 3f668f8cb906ab16c305e610c875e11a9f9a14b4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
      SUBROUTINE DLAED3( K, N, N1, D, Q, LDQ, RHO, DLAMDA, Q2, INDX,
     $                   CTOT, W, S, INFO )
*
*  -- LAPACK routine (version 3.2) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            INFO, K, LDQ, N, N1
      DOUBLE PRECISION   RHO
*     ..
*     .. Array Arguments ..
      INTEGER            CTOT( * ), INDX( * )
      DOUBLE PRECISION   D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ),
     $                   S( * ), W( * )
*     ..
*
*  Purpose
*  =======
*
*  DLAED3 finds the roots of the secular equation, as defined by the
*  values in D, W, and RHO, between 1 and K.  It makes the
*  appropriate calls to DLAED4 and then updates the eigenvectors by
*  multiplying the matrix of eigenvectors of the pair of eigensystems
*  being combined by the matrix of eigenvectors of the K-by-K system
*  which is solved here.
*
*  This code makes very mild assumptions about floating point
*  arithmetic. It will work on machines with a guard digit in
*  add/subtract, or on those binary machines without guard digits
*  which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
*  It could conceivably fail on hexadecimal or decimal machines
*  without guard digits, but we know of none.
*
*  Arguments
*  =========
*
*  K       (input) INTEGER
*          The number of terms in the rational function to be solved by
*          DLAED4.  K >= 0.
*
*  N       (input) INTEGER
*          The number of rows and columns in the Q matrix.
*          N >= K (deflation may result in N>K).
*
*  N1      (input) INTEGER
*          The location of the last eigenvalue in the leading submatrix.
*          min(1,N) <= N1 <= N/2.
*
*  D       (output) DOUBLE PRECISION array, dimension (N)
*          D(I) contains the updated eigenvalues for
*          1 <= I <= K.
*
*  Q       (output) DOUBLE PRECISION array, dimension (LDQ,N)
*          Initially the first K columns are used as workspace.
*          On output the columns 1 to K contain
*          the updated eigenvectors.
*
*  LDQ     (input) INTEGER
*          The leading dimension of the array Q.  LDQ >= max(1,N).
*
*  RHO     (input) DOUBLE PRECISION
*          The value of the parameter in the rank one update equation.
*          RHO >= 0 required.
*
*  DLAMDA  (input/output) DOUBLE PRECISION array, dimension (K)
*          The first K elements of this array contain the old roots
*          of the deflated updating problem.  These are the poles
*          of the secular equation. May be changed on output by
*          having lowest order bit set to zero on Cray X-MP, Cray Y-MP,
*          Cray-2, or Cray C-90, as described above.
*
*  Q2      (input) DOUBLE PRECISION array, dimension (LDQ2, N)
*          The first K columns of this matrix contain the non-deflated
*          eigenvectors for the split problem.
*
*  INDX    (input) INTEGER array, dimension (N)
*          The permutation used to arrange the columns of the deflated
*          Q matrix into three groups (see DLAED2).
*          The rows of the eigenvectors found by DLAED4 must be likewise
*          permuted before the matrix multiply can take place.
*
*  CTOT    (input) INTEGER array, dimension (4)
*          A count of the total number of the various types of columns
*          in Q, as described in INDX.  The fourth column type is any
*          column which has been deflated.
*
*  W       (input/output) DOUBLE PRECISION array, dimension (K)
*          The first K elements of this array contain the components
*          of the deflation-adjusted updating vector. Destroyed on
*          output.
*
*  S       (workspace) DOUBLE PRECISION array, dimension (N1 + 1)*K
*          Will contain the eigenvectors of the repaired matrix which
*          will be multiplied by the previously accumulated eigenvectors
*          to update the system.
*
*  LDS     (input) INTEGER
*          The leading dimension of S.  LDS >= max(1,K).
*
*  INFO    (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*          > 0:  if INFO = 1, an eigenvalue did not converge
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Jeff Rutter, Computer Science Division, University of California
*     at Berkeley, USA
*  Modified by Francoise Tisseur, University of Tennessee.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, II, IQ2, J, N12, N2, N23
      DOUBLE PRECISION   TEMP
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMC3, DNRM2
      EXTERNAL           DLAMC3, DNRM2
*     ..
*     .. External Subroutines ..
      EXTERNAL           DCOPY, DGEMM, DLACPY, DLAED4, DLASET, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, SIGN, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
*
      IF( K.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.K ) THEN
         INFO = -2
      ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
         INFO = -6
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DLAED3', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( K.EQ.0 )
     $   RETURN
*
*     Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can
*     be computed with high relative accuracy (barring over/underflow).
*     This is a problem on machines without a guard digit in
*     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
*     The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I),
*     which on any of these machines zeros out the bottommost
*     bit of DLAMDA(I) if it is 1; this makes the subsequent
*     subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation
*     occurs. On binary machines with a guard digit (almost all
*     machines) it does not change DLAMDA(I) at all. On hexadecimal
*     and decimal machines with a guard digit, it slightly
*     changes the bottommost bits of DLAMDA(I). It does not account
*     for hexadecimal or decimal machines without guard digits
*     (we know of none). We use a subroutine call to compute
*     2*DLAMBDA(I) to prevent optimizing compilers from eliminating
*     this code.
*
      DO 10 I = 1, K
         DLAMDA( I ) = DLAMC3( DLAMDA( I ), DLAMDA( I ) ) - DLAMDA( I )
   10 CONTINUE
*
      DO 20 J = 1, K
         CALL DLAED4( K, J, DLAMDA, W, Q( 1, J ), RHO, D( J ), INFO )
*
*        If the zero finder fails, the computation is terminated.
*
         IF( INFO.NE.0 )
     $      GO TO 120
   20 CONTINUE
*
      IF( K.EQ.1 )
     $   GO TO 110
      IF( K.EQ.2 ) THEN
         DO 30 J = 1, K
            W( 1 ) = Q( 1, J )
            W( 2 ) = Q( 2, J )
            II = INDX( 1 )
            Q( 1, J ) = W( II )
            II = INDX( 2 )
            Q( 2, J ) = W( II )
   30    CONTINUE
         GO TO 110
      END IF
*
*     Compute updated W.
*
      CALL DCOPY( K, W, 1, S, 1 )
*
*     Initialize W(I) = Q(I,I)
*
      CALL DCOPY( K, Q, LDQ+1, W, 1 )
      DO 60 J = 1, K
         DO 40 I = 1, J - 1
            W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
   40    CONTINUE
         DO 50 I = J + 1, K
            W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
   50    CONTINUE
   60 CONTINUE
      DO 70 I = 1, K
         W( I ) = SIGN( SQRT( -W( I ) ), S( I ) )
   70 CONTINUE
*
*     Compute eigenvectors of the modified rank-1 modification.
*
      DO 100 J = 1, K
         DO 80 I = 1, K
            S( I ) = W( I ) / Q( I, J )
   80    CONTINUE
         TEMP = DNRM2( K, S, 1 )
         DO 90 I = 1, K
            II = INDX( I )
            Q( I, J ) = S( II ) / TEMP
   90    CONTINUE
  100 CONTINUE
*
*     Compute the updated eigenvectors.
*
  110 CONTINUE
*
      N2 = N - N1
      N12 = CTOT( 1 ) + CTOT( 2 )
      N23 = CTOT( 2 ) + CTOT( 3 )
*
      CALL DLACPY( 'A', N23, K, Q( CTOT( 1 )+1, 1 ), LDQ, S, N23 )
      IQ2 = N1*N12 + 1
      IF( N23.NE.0 ) THEN
         CALL DGEMM( 'N', 'N', N2, K, N23, ONE, Q2( IQ2 ), N2, S, N23,
     $               ZERO, Q( N1+1, 1 ), LDQ )
      ELSE
         CALL DLASET( 'A', N2, K, ZERO, ZERO, Q( N1+1, 1 ), LDQ )
      END IF
*
      CALL DLACPY( 'A', N12, K, Q, LDQ, S, N12 )
      IF( N12.NE.0 ) THEN
         CALL DGEMM( 'N', 'N', N1, K, N12, ONE, Q2, N1, S, N12, ZERO, Q,
     $               LDQ )
      ELSE
         CALL DLASET( 'A', N1, K, ZERO, ZERO, Q( 1, 1 ), LDQ )
      END IF
*
*
  120 CONTINUE
      RETURN
*
*     End of DLAED3
*
      END