summaryrefslogtreecommitdiff
path: root/SRC/dlaed2.f
blob: fbcc87a8803980a043537495c96f1a7f58157625 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
*> \brief \b DLAED2 used by sstedc. Merges eigenvalues and deflates secular equation. Used when the original matrix is tridiagonal.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLAED2 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed2.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed2.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed2.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE DLAED2( K, N, N1, D, Q, LDQ, INDXQ, RHO, Z, DLAMDA, W,
*                          Q2, INDX, INDXC, INDXP, COLTYP, INFO )
*
*       .. Scalar Arguments ..
*       INTEGER            INFO, K, LDQ, N, N1
*       DOUBLE PRECISION   RHO
*       ..
*       .. Array Arguments ..
*       INTEGER            COLTYP( * ), INDX( * ), INDXC( * ), INDXP( * ),
*      $                   INDXQ( * )
*       DOUBLE PRECISION   D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ),
*      $                   W( * ), Z( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DLAED2 merges the two sets of eigenvalues together into a single
*> sorted set.  Then it tries to deflate the size of the problem.
*> There are two ways in which deflation can occur:  when two or more
*> eigenvalues are close together or if there is a tiny entry in the
*> Z vector.  For each such occurrence the order of the related secular
*> equation problem is reduced by one.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[out] K
*> \verbatim
*>          K is INTEGER
*>         The number of non-deflated eigenvalues, and the order of the
*>         related secular equation. 0 <= K <=N.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>         The dimension of the symmetric tridiagonal matrix.  N >= 0.
*> \endverbatim
*>
*> \param[in] N1
*> \verbatim
*>          N1 is INTEGER
*>         The location of the last eigenvalue in the leading sub-matrix.
*>         min(1,N) <= N1 <= N/2.
*> \endverbatim
*>
*> \param[in,out] D
*> \verbatim
*>          D is DOUBLE PRECISION array, dimension (N)
*>         On entry, D contains the eigenvalues of the two submatrices to
*>         be combined.
*>         On exit, D contains the trailing (N-K) updated eigenvalues
*>         (those which were deflated) sorted into increasing order.
*> \endverbatim
*>
*> \param[in,out] Q
*> \verbatim
*>          Q is DOUBLE PRECISION array, dimension (LDQ, N)
*>         On entry, Q contains the eigenvectors of two submatrices in
*>         the two square blocks with corners at (1,1), (N1,N1)
*>         and (N1+1, N1+1), (N,N).
*>         On exit, Q contains the trailing (N-K) updated eigenvectors
*>         (those which were deflated) in its last N-K columns.
*> \endverbatim
*>
*> \param[in] LDQ
*> \verbatim
*>          LDQ is INTEGER
*>         The leading dimension of the array Q.  LDQ >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] INDXQ
*> \verbatim
*>          INDXQ is INTEGER array, dimension (N)
*>         The permutation which separately sorts the two sub-problems
*>         in D into ascending order.  Note that elements in the second
*>         half of this permutation must first have N1 added to their
*>         values. Destroyed on exit.
*> \endverbatim
*>
*> \param[in,out] RHO
*> \verbatim
*>          RHO is DOUBLE PRECISION
*>         On entry, the off-diagonal element associated with the rank-1
*>         cut which originally split the two submatrices which are now
*>         being recombined.
*>         On exit, RHO has been modified to the value required by
*>         DLAED3.
*> \endverbatim
*>
*> \param[in] Z
*> \verbatim
*>          Z is DOUBLE PRECISION array, dimension (N)
*>         On entry, Z contains the updating vector (the last
*>         row of the first sub-eigenvector matrix and the first row of
*>         the second sub-eigenvector matrix).
*>         On exit, the contents of Z have been destroyed by the updating
*>         process.
*> \endverbatim
*>
*> \param[out] DLAMDA
*> \verbatim
*>          DLAMDA is DOUBLE PRECISION array, dimension (N)
*>         A copy of the first K eigenvalues which will be used by
*>         DLAED3 to form the secular equation.
*> \endverbatim
*>
*> \param[out] W
*> \verbatim
*>          W is DOUBLE PRECISION array, dimension (N)
*>         The first k values of the final deflation-altered z-vector
*>         which will be passed to DLAED3.
*> \endverbatim
*>
*> \param[out] Q2
*> \verbatim
*>          Q2 is DOUBLE PRECISION array, dimension (N1**2+(N-N1)**2)
*>         A copy of the first K eigenvectors which will be used by
*>         DLAED3 in a matrix multiply (DGEMM) to solve for the new
*>         eigenvectors.
*> \endverbatim
*>
*> \param[out] INDX
*> \verbatim
*>          INDX is INTEGER array, dimension (N)
*>         The permutation used to sort the contents of DLAMDA into
*>         ascending order.
*> \endverbatim
*>
*> \param[out] INDXC
*> \verbatim
*>          INDXC is INTEGER array, dimension (N)
*>         The permutation used to arrange the columns of the deflated
*>         Q matrix into three groups:  the first group contains non-zero
*>         elements only at and above N1, the second contains
*>         non-zero elements only below N1, and the third is dense.
*> \endverbatim
*>
*> \param[out] INDXP
*> \verbatim
*>          INDXP is INTEGER array, dimension (N)
*>         The permutation used to place deflated values of D at the end
*>         of the array.  INDXP(1:K) points to the nondeflated D-values
*>         and INDXP(K+1:N) points to the deflated eigenvalues.
*> \endverbatim
*>
*> \param[out] COLTYP
*> \verbatim
*>          COLTYP is INTEGER array, dimension (N)
*>         During execution, a label which will indicate which of the
*>         following types a column in the Q2 matrix is:
*>         1 : non-zero in the upper half only;
*>         2 : dense;
*>         3 : non-zero in the lower half only;
*>         4 : deflated.
*>         On exit, COLTYP(i) is the number of columns of type i,
*>         for i=1 to 4 only.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit.
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup auxOTHERcomputational
*
*> \par Contributors:
*  ==================
*>
*> Jeff Rutter, Computer Science Division, University of California
*> at Berkeley, USA \n
*>  Modified by Francoise Tisseur, University of Tennessee
*>
*  =====================================================================
      SUBROUTINE DLAED2( K, N, N1, D, Q, LDQ, INDXQ, RHO, Z, DLAMDA, W,
     $                   Q2, INDX, INDXC, INDXP, COLTYP, INFO )
*
*  -- LAPACK computational routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      INTEGER            INFO, K, LDQ, N, N1
      DOUBLE PRECISION   RHO
*     ..
*     .. Array Arguments ..
      INTEGER            COLTYP( * ), INDX( * ), INDXC( * ), INDXP( * ),
     $                   INDXQ( * )
      DOUBLE PRECISION   D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ),
     $                   W( * ), Z( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   MONE, ZERO, ONE, TWO, EIGHT
      PARAMETER          ( MONE = -1.0D0, ZERO = 0.0D0, ONE = 1.0D0,
     $                   TWO = 2.0D0, EIGHT = 8.0D0 )
*     ..
*     .. Local Arrays ..
      INTEGER            CTOT( 4 ), PSM( 4 )
*     ..
*     .. Local Scalars ..
      INTEGER            CT, I, IMAX, IQ1, IQ2, J, JMAX, JS, K2, N1P1,
     $                   N2, NJ, PJ
      DOUBLE PRECISION   C, EPS, S, T, TAU, TOL
*     ..
*     .. External Functions ..
      INTEGER            IDAMAX
      DOUBLE PRECISION   DLAMCH, DLAPY2
      EXTERNAL           IDAMAX, DLAMCH, DLAPY2
*     ..
*     .. External Subroutines ..
      EXTERNAL           DCOPY, DLACPY, DLAMRG, DROT, DSCAL, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
*
      IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSE IF( MIN( 1, ( N / 2 ) ).GT.N1 .OR. ( N / 2 ).LT.N1 ) THEN
         INFO = -3
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DLAED2', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      N2 = N - N1
      N1P1 = N1 + 1
*
      IF( RHO.LT.ZERO ) THEN
         CALL DSCAL( N2, MONE, Z( N1P1 ), 1 )
      END IF
*
*     Normalize z so that norm(z) = 1.  Since z is the concatenation of
*     two normalized vectors, norm2(z) = sqrt(2).
*
      T = ONE / SQRT( TWO )
      CALL DSCAL( N, T, Z, 1 )
*
*     RHO = ABS( norm(z)**2 * RHO )
*
      RHO = ABS( TWO*RHO )
*
*     Sort the eigenvalues into increasing order
*
      DO 10 I = N1P1, N
         INDXQ( I ) = INDXQ( I ) + N1
   10 CONTINUE
*
*     re-integrate the deflated parts from the last pass
*
      DO 20 I = 1, N
         DLAMDA( I ) = D( INDXQ( I ) )
   20 CONTINUE
      CALL DLAMRG( N1, N2, DLAMDA, 1, 1, INDXC )
      DO 30 I = 1, N
         INDX( I ) = INDXQ( INDXC( I ) )
   30 CONTINUE
*
*     Calculate the allowable deflation tolerance
*
      IMAX = IDAMAX( N, Z, 1 )
      JMAX = IDAMAX( N, D, 1 )
      EPS = DLAMCH( 'Epsilon' )
      TOL = EIGHT*EPS*MAX( ABS( D( JMAX ) ), ABS( Z( IMAX ) ) )
*
*     If the rank-1 modifier is small enough, no more needs to be done
*     except to reorganize Q so that its columns correspond with the
*     elements in D.
*
      IF( RHO*ABS( Z( IMAX ) ).LE.TOL ) THEN
         K = 0
         IQ2 = 1
         DO 40 J = 1, N
            I = INDX( J )
            CALL DCOPY( N, Q( 1, I ), 1, Q2( IQ2 ), 1 )
            DLAMDA( J ) = D( I )
            IQ2 = IQ2 + N
   40    CONTINUE
         CALL DLACPY( 'A', N, N, Q2, N, Q, LDQ )
         CALL DCOPY( N, DLAMDA, 1, D, 1 )
         GO TO 190
      END IF
*
*     If there are multiple eigenvalues then the problem deflates.  Here
*     the number of equal eigenvalues are found.  As each equal
*     eigenvalue is found, an elementary reflector is computed to rotate
*     the corresponding eigensubspace so that the corresponding
*     components of Z are zero in this new basis.
*
      DO 50 I = 1, N1
         COLTYP( I ) = 1
   50 CONTINUE
      DO 60 I = N1P1, N
         COLTYP( I ) = 3
   60 CONTINUE
*
*
      K = 0
      K2 = N + 1
      DO 70 J = 1, N
         NJ = INDX( J )
         IF( RHO*ABS( Z( NJ ) ).LE.TOL ) THEN
*
*           Deflate due to small z component.
*
            K2 = K2 - 1
            COLTYP( NJ ) = 4
            INDXP( K2 ) = NJ
            IF( J.EQ.N )
     $         GO TO 100
         ELSE
            PJ = NJ
            GO TO 80
         END IF
   70 CONTINUE
   80 CONTINUE
      J = J + 1
      NJ = INDX( J )
      IF( J.GT.N )
     $   GO TO 100
      IF( RHO*ABS( Z( NJ ) ).LE.TOL ) THEN
*
*        Deflate due to small z component.
*
         K2 = K2 - 1
         COLTYP( NJ ) = 4
         INDXP( K2 ) = NJ
      ELSE
*
*        Check if eigenvalues are close enough to allow deflation.
*
         S = Z( PJ )
         C = Z( NJ )
*
*        Find sqrt(a**2+b**2) without overflow or
*        destructive underflow.
*
         TAU = DLAPY2( C, S )
         T = D( NJ ) - D( PJ )
         C = C / TAU
         S = -S / TAU
         IF( ABS( T*C*S ).LE.TOL ) THEN
*
*           Deflation is possible.
*
            Z( NJ ) = TAU
            Z( PJ ) = ZERO
            IF( COLTYP( NJ ).NE.COLTYP( PJ ) )
     $         COLTYP( NJ ) = 2
            COLTYP( PJ ) = 4
            CALL DROT( N, Q( 1, PJ ), 1, Q( 1, NJ ), 1, C, S )
            T = D( PJ )*C**2 + D( NJ )*S**2
            D( NJ ) = D( PJ )*S**2 + D( NJ )*C**2
            D( PJ ) = T
            K2 = K2 - 1
            I = 1
   90       CONTINUE
            IF( K2+I.LE.N ) THEN
               IF( D( PJ ).LT.D( INDXP( K2+I ) ) ) THEN
                  INDXP( K2+I-1 ) = INDXP( K2+I )
                  INDXP( K2+I ) = PJ
                  I = I + 1
                  GO TO 90
               ELSE
                  INDXP( K2+I-1 ) = PJ
               END IF
            ELSE
               INDXP( K2+I-1 ) = PJ
            END IF
            PJ = NJ
         ELSE
            K = K + 1
            DLAMDA( K ) = D( PJ )
            W( K ) = Z( PJ )
            INDXP( K ) = PJ
            PJ = NJ
         END IF
      END IF
      GO TO 80
  100 CONTINUE
*
*     Record the last eigenvalue.
*
      K = K + 1
      DLAMDA( K ) = D( PJ )
      W( K ) = Z( PJ )
      INDXP( K ) = PJ
*
*     Count up the total number of the various types of columns, then
*     form a permutation which positions the four column types into
*     four uniform groups (although one or more of these groups may be
*     empty).
*
      DO 110 J = 1, 4
         CTOT( J ) = 0
  110 CONTINUE
      DO 120 J = 1, N
         CT = COLTYP( J )
         CTOT( CT ) = CTOT( CT ) + 1
  120 CONTINUE
*
*     PSM(*) = Position in SubMatrix (of types 1 through 4)
*
      PSM( 1 ) = 1
      PSM( 2 ) = 1 + CTOT( 1 )
      PSM( 3 ) = PSM( 2 ) + CTOT( 2 )
      PSM( 4 ) = PSM( 3 ) + CTOT( 3 )
      K = N - CTOT( 4 )
*
*     Fill out the INDXC array so that the permutation which it induces
*     will place all type-1 columns first, all type-2 columns next,
*     then all type-3's, and finally all type-4's.
*
      DO 130 J = 1, N
         JS = INDXP( J )
         CT = COLTYP( JS )
         INDX( PSM( CT ) ) = JS
         INDXC( PSM( CT ) ) = J
         PSM( CT ) = PSM( CT ) + 1
  130 CONTINUE
*
*     Sort the eigenvalues and corresponding eigenvectors into DLAMDA
*     and Q2 respectively.  The eigenvalues/vectors which were not
*     deflated go into the first K slots of DLAMDA and Q2 respectively,
*     while those which were deflated go into the last N - K slots.
*
      I = 1
      IQ1 = 1
      IQ2 = 1 + ( CTOT( 1 )+CTOT( 2 ) )*N1
      DO 140 J = 1, CTOT( 1 )
         JS = INDX( I )
         CALL DCOPY( N1, Q( 1, JS ), 1, Q2( IQ1 ), 1 )
         Z( I ) = D( JS )
         I = I + 1
         IQ1 = IQ1 + N1
  140 CONTINUE
*
      DO 150 J = 1, CTOT( 2 )
         JS = INDX( I )
         CALL DCOPY( N1, Q( 1, JS ), 1, Q2( IQ1 ), 1 )
         CALL DCOPY( N2, Q( N1+1, JS ), 1, Q2( IQ2 ), 1 )
         Z( I ) = D( JS )
         I = I + 1
         IQ1 = IQ1 + N1
         IQ2 = IQ2 + N2
  150 CONTINUE
*
      DO 160 J = 1, CTOT( 3 )
         JS = INDX( I )
         CALL DCOPY( N2, Q( N1+1, JS ), 1, Q2( IQ2 ), 1 )
         Z( I ) = D( JS )
         I = I + 1
         IQ2 = IQ2 + N2
  160 CONTINUE
*
      IQ1 = IQ2
      DO 170 J = 1, CTOT( 4 )
         JS = INDX( I )
         CALL DCOPY( N, Q( 1, JS ), 1, Q2( IQ2 ), 1 )
         IQ2 = IQ2 + N
         Z( I ) = D( JS )
         I = I + 1
  170 CONTINUE
*
*     The deflated eigenvalues and their corresponding vectors go back
*     into the last N - K slots of D and Q respectively.
*
      IF( K.LT.N ) THEN
         CALL DLACPY( 'A', N, CTOT( 4 ), Q2( IQ1 ), N,
     $                Q( 1, K+1 ), LDQ )
         CALL DCOPY( N-K, Z( K+1 ), 1, D( K+1 ), 1 )
      END IF
*
*     Copy CTOT into COLTYP for referencing in DLAED3.
*
      DO 180 J = 1, 4
         COLTYP( J ) = CTOT( J )
  180 CONTINUE
*
  190 CONTINUE
      RETURN
*
*     End of DLAED2
*
      END