1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
|
SUBROUTINE DLAEBZ( IJOB, NITMAX, N, MMAX, MINP, NBMIN, ABSTOL,
$ RELTOL, PIVMIN, D, E, E2, NVAL, AB, C, MOUT,
$ NAB, WORK, IWORK, INFO )
*
* -- LAPACK auxiliary routine (version 3.3.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* -- April 2011 --
*
* .. Scalar Arguments ..
INTEGER IJOB, INFO, MINP, MMAX, MOUT, N, NBMIN, NITMAX
DOUBLE PRECISION ABSTOL, PIVMIN, RELTOL
* ..
* .. Array Arguments ..
INTEGER IWORK( * ), NAB( MMAX, * ), NVAL( * )
DOUBLE PRECISION AB( MMAX, * ), C( * ), D( * ), E( * ), E2( * ),
$ WORK( * )
* ..
*
* Purpose
* =======
*
* DLAEBZ contains the iteration loops which compute and use the
* function N(w), which is the count of eigenvalues of a symmetric
* tridiagonal matrix T less than or equal to its argument w. It
* performs a choice of two types of loops:
*
* IJOB=1, followed by
* IJOB=2: It takes as input a list of intervals and returns a list of
* sufficiently small intervals whose union contains the same
* eigenvalues as the union of the original intervals.
* The input intervals are (AB(j,1),AB(j,2)], j=1,...,MINP.
* The output interval (AB(j,1),AB(j,2)] will contain
* eigenvalues NAB(j,1)+1,...,NAB(j,2), where 1 <= j <= MOUT.
*
* IJOB=3: It performs a binary search in each input interval
* (AB(j,1),AB(j,2)] for a point w(j) such that
* N(w(j))=NVAL(j), and uses C(j) as the starting point of
* the search. If such a w(j) is found, then on output
* AB(j,1)=AB(j,2)=w. If no such w(j) is found, then on output
* (AB(j,1),AB(j,2)] will be a small interval containing the
* point where N(w) jumps through NVAL(j), unless that point
* lies outside the initial interval.
*
* Note that the intervals are in all cases half-open intervals,
* i.e., of the form (a,b] , which includes b but not a .
*
* To avoid underflow, the matrix should be scaled so that its largest
* element is no greater than overflow**(1/2) * underflow**(1/4)
* in absolute value. To assure the most accurate computation
* of small eigenvalues, the matrix should be scaled to be
* not much smaller than that, either.
*
* See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
* Matrix", Report CS41, Computer Science Dept., Stanford
* University, July 21, 1966
*
* Note: the arguments are, in general, *not* checked for unreasonable
* values.
*
* Arguments
* =========
*
* IJOB (input) INTEGER
* Specifies what is to be done:
* = 1: Compute NAB for the initial intervals.
* = 2: Perform bisection iteration to find eigenvalues of T.
* = 3: Perform bisection iteration to invert N(w), i.e.,
* to find a point which has a specified number of
* eigenvalues of T to its left.
* Other values will cause DLAEBZ to return with INFO=-1.
*
* NITMAX (input) INTEGER
* The maximum number of "levels" of bisection to be
* performed, i.e., an interval of width W will not be made
* smaller than 2^(-NITMAX) * W. If not all intervals
* have converged after NITMAX iterations, then INFO is set
* to the number of non-converged intervals.
*
* N (input) INTEGER
* The dimension n of the tridiagonal matrix T. It must be at
* least 1.
*
* MMAX (input) INTEGER
* The maximum number of intervals. If more than MMAX intervals
* are generated, then DLAEBZ will quit with INFO=MMAX+1.
*
* MINP (input) INTEGER
* The initial number of intervals. It may not be greater than
* MMAX.
*
* NBMIN (input) INTEGER
* The smallest number of intervals that should be processed
* using a vector loop. If zero, then only the scalar loop
* will be used.
*
* ABSTOL (input) DOUBLE PRECISION
* The minimum (absolute) width of an interval. When an
* interval is narrower than ABSTOL, or than RELTOL times the
* larger (in magnitude) endpoint, then it is considered to be
* sufficiently small, i.e., converged. This must be at least
* zero.
*
* RELTOL (input) DOUBLE PRECISION
* The minimum relative width of an interval. When an interval
* is narrower than ABSTOL, or than RELTOL times the larger (in
* magnitude) endpoint, then it is considered to be
* sufficiently small, i.e., converged. Note: this should
* always be at least radix*machine epsilon.
*
* PIVMIN (input) DOUBLE PRECISION
* The minimum absolute value of a "pivot" in the Sturm
* sequence loop. This *must* be at least max |e(j)**2| *
* safe_min and at least safe_min, where safe_min is at least
* the smallest number that can divide one without overflow.
*
* D (input) DOUBLE PRECISION array, dimension (N)
* The diagonal elements of the tridiagonal matrix T.
*
* E (input) DOUBLE PRECISION array, dimension (N)
* The offdiagonal elements of the tridiagonal matrix T in
* positions 1 through N-1. E(N) is arbitrary.
*
* E2 (input) DOUBLE PRECISION array, dimension (N)
* The squares of the offdiagonal elements of the tridiagonal
* matrix T. E2(N) is ignored.
*
* NVAL (input/output) INTEGER array, dimension (MINP)
* If IJOB=1 or 2, not referenced.
* If IJOB=3, the desired values of N(w). The elements of NVAL
* will be reordered to correspond with the intervals in AB.
* Thus, NVAL(j) on output will not, in general be the same as
* NVAL(j) on input, but it will correspond with the interval
* (AB(j,1),AB(j,2)] on output.
*
* AB (input/output) DOUBLE PRECISION array, dimension (MMAX,2)
* The endpoints of the intervals. AB(j,1) is a(j), the left
* endpoint of the j-th interval, and AB(j,2) is b(j), the
* right endpoint of the j-th interval. The input intervals
* will, in general, be modified, split, and reordered by the
* calculation.
*
* C (input/output) DOUBLE PRECISION array, dimension (MMAX)
* If IJOB=1, ignored.
* If IJOB=2, workspace.
* If IJOB=3, then on input C(j) should be initialized to the
* first search point in the binary search.
*
* MOUT (output) INTEGER
* If IJOB=1, the number of eigenvalues in the intervals.
* If IJOB=2 or 3, the number of intervals output.
* If IJOB=3, MOUT will equal MINP.
*
* NAB (input/output) INTEGER array, dimension (MMAX,2)
* If IJOB=1, then on output NAB(i,j) will be set to N(AB(i,j)).
* If IJOB=2, then on input, NAB(i,j) should be set. It must
* satisfy the condition:
* N(AB(i,1)) <= NAB(i,1) <= NAB(i,2) <= N(AB(i,2)),
* which means that in interval i only eigenvalues
* NAB(i,1)+1,...,NAB(i,2) will be considered. Usually,
* NAB(i,j)=N(AB(i,j)), from a previous call to DLAEBZ with
* IJOB=1.
* On output, NAB(i,j) will contain
* max(na(k),min(nb(k),N(AB(i,j)))), where k is the index of
* the input interval that the output interval
* (AB(j,1),AB(j,2)] came from, and na(k) and nb(k) are the
* the input values of NAB(k,1) and NAB(k,2).
* If IJOB=3, then on output, NAB(i,j) contains N(AB(i,j)),
* unless N(w) > NVAL(i) for all search points w , in which
* case NAB(i,1) will not be modified, i.e., the output
* value will be the same as the input value (modulo
* reorderings -- see NVAL and AB), or unless N(w) < NVAL(i)
* for all search points w , in which case NAB(i,2) will
* not be modified. Normally, NAB should be set to some
* distinctive value(s) before DLAEBZ is called.
*
* WORK (workspace) DOUBLE PRECISION array, dimension (MMAX)
* Workspace.
*
* IWORK (workspace) INTEGER array, dimension (MMAX)
* Workspace.
*
* INFO (output) INTEGER
* = 0: All intervals converged.
* = 1--MMAX: The last INFO intervals did not converge.
* = MMAX+1: More than MMAX intervals were generated.
*
* Further Details
* ===============
*
* This routine is intended to be called only by other LAPACK
* routines, thus the interface is less user-friendly. It is intended
* for two purposes:
*
* (a) finding eigenvalues. In this case, DLAEBZ should have one or
* more initial intervals set up in AB, and DLAEBZ should be called
* with IJOB=1. This sets up NAB, and also counts the eigenvalues.
* Intervals with no eigenvalues would usually be thrown out at
* this point. Also, if not all the eigenvalues in an interval i
* are desired, NAB(i,1) can be increased or NAB(i,2) decreased.
* For example, set NAB(i,1)=NAB(i,2)-1 to get the largest
* eigenvalue. DLAEBZ is then called with IJOB=2 and MMAX
* no smaller than the value of MOUT returned by the call with
* IJOB=1. After this (IJOB=2) call, eigenvalues NAB(i,1)+1
* through NAB(i,2) are approximately AB(i,1) (or AB(i,2)) to the
* tolerance specified by ABSTOL and RELTOL.
*
* (b) finding an interval (a',b'] containing eigenvalues w(f),...,w(l).
* In this case, start with a Gershgorin interval (a,b). Set up
* AB to contain 2 search intervals, both initially (a,b). One
* NVAL element should contain f-1 and the other should contain l
* , while C should contain a and b, resp. NAB(i,1) should be -1
* and NAB(i,2) should be N+1, to flag an error if the desired
* interval does not lie in (a,b). DLAEBZ is then called with
* IJOB=3. On exit, if w(f-1) < w(f), then one of the intervals --
* j -- will have AB(j,1)=AB(j,2) and NAB(j,1)=NAB(j,2)=f-1, while
* if, to the specified tolerance, w(f-k)=...=w(f+r), k > 0 and r
* >= 0, then the interval will have N(AB(j,1))=NAB(j,1)=f-k and
* N(AB(j,2))=NAB(j,2)=f+r. The cases w(l) < w(l+1) and
* w(l-r)=...=w(l+k) are handled similarly.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, TWO, HALF
PARAMETER ( ZERO = 0.0D0, TWO = 2.0D0,
$ HALF = 1.0D0 / TWO )
* ..
* .. Local Scalars ..
INTEGER ITMP1, ITMP2, J, JI, JIT, JP, KF, KFNEW, KL,
$ KLNEW
DOUBLE PRECISION TMP1, TMP2
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* ..
* .. Executable Statements ..
*
* Check for Errors
*
INFO = 0
IF( IJOB.LT.1 .OR. IJOB.GT.3 ) THEN
INFO = -1
RETURN
END IF
*
* Initialize NAB
*
IF( IJOB.EQ.1 ) THEN
*
* Compute the number of eigenvalues in the initial intervals.
*
MOUT = 0
DO 30 JI = 1, MINP
DO 20 JP = 1, 2
TMP1 = D( 1 ) - AB( JI, JP )
IF( ABS( TMP1 ).LT.PIVMIN )
$ TMP1 = -PIVMIN
NAB( JI, JP ) = 0
IF( TMP1.LE.ZERO )
$ NAB( JI, JP ) = 1
*
DO 10 J = 2, N
TMP1 = D( J ) - E2( J-1 ) / TMP1 - AB( JI, JP )
IF( ABS( TMP1 ).LT.PIVMIN )
$ TMP1 = -PIVMIN
IF( TMP1.LE.ZERO )
$ NAB( JI, JP ) = NAB( JI, JP ) + 1
10 CONTINUE
20 CONTINUE
MOUT = MOUT + NAB( JI, 2 ) - NAB( JI, 1 )
30 CONTINUE
RETURN
END IF
*
* Initialize for loop
*
* KF and KL have the following meaning:
* Intervals 1,...,KF-1 have converged.
* Intervals KF,...,KL still need to be refined.
*
KF = 1
KL = MINP
*
* If IJOB=2, initialize C.
* If IJOB=3, use the user-supplied starting point.
*
IF( IJOB.EQ.2 ) THEN
DO 40 JI = 1, MINP
C( JI ) = HALF*( AB( JI, 1 )+AB( JI, 2 ) )
40 CONTINUE
END IF
*
* Iteration loop
*
DO 130 JIT = 1, NITMAX
*
* Loop over intervals
*
IF( KL-KF+1.GE.NBMIN .AND. NBMIN.GT.0 ) THEN
*
* Begin of Parallel Version of the loop
*
DO 60 JI = KF, KL
*
* Compute N(c), the number of eigenvalues less than c
*
WORK( JI ) = D( 1 ) - C( JI )
IWORK( JI ) = 0
IF( WORK( JI ).LE.PIVMIN ) THEN
IWORK( JI ) = 1
WORK( JI ) = MIN( WORK( JI ), -PIVMIN )
END IF
*
DO 50 J = 2, N
WORK( JI ) = D( J ) - E2( J-1 ) / WORK( JI ) - C( JI )
IF( WORK( JI ).LE.PIVMIN ) THEN
IWORK( JI ) = IWORK( JI ) + 1
WORK( JI ) = MIN( WORK( JI ), -PIVMIN )
END IF
50 CONTINUE
60 CONTINUE
*
IF( IJOB.LE.2 ) THEN
*
* IJOB=2: Choose all intervals containing eigenvalues.
*
KLNEW = KL
DO 70 JI = KF, KL
*
* Insure that N(w) is monotone
*
IWORK( JI ) = MIN( NAB( JI, 2 ),
$ MAX( NAB( JI, 1 ), IWORK( JI ) ) )
*
* Update the Queue -- add intervals if both halves
* contain eigenvalues.
*
IF( IWORK( JI ).EQ.NAB( JI, 2 ) ) THEN
*
* No eigenvalue in the upper interval:
* just use the lower interval.
*
AB( JI, 2 ) = C( JI )
*
ELSE IF( IWORK( JI ).EQ.NAB( JI, 1 ) ) THEN
*
* No eigenvalue in the lower interval:
* just use the upper interval.
*
AB( JI, 1 ) = C( JI )
ELSE
KLNEW = KLNEW + 1
IF( KLNEW.LE.MMAX ) THEN
*
* Eigenvalue in both intervals -- add upper to
* queue.
*
AB( KLNEW, 2 ) = AB( JI, 2 )
NAB( KLNEW, 2 ) = NAB( JI, 2 )
AB( KLNEW, 1 ) = C( JI )
NAB( KLNEW, 1 ) = IWORK( JI )
AB( JI, 2 ) = C( JI )
NAB( JI, 2 ) = IWORK( JI )
ELSE
INFO = MMAX + 1
END IF
END IF
70 CONTINUE
IF( INFO.NE.0 )
$ RETURN
KL = KLNEW
ELSE
*
* IJOB=3: Binary search. Keep only the interval containing
* w s.t. N(w) = NVAL
*
DO 80 JI = KF, KL
IF( IWORK( JI ).LE.NVAL( JI ) ) THEN
AB( JI, 1 ) = C( JI )
NAB( JI, 1 ) = IWORK( JI )
END IF
IF( IWORK( JI ).GE.NVAL( JI ) ) THEN
AB( JI, 2 ) = C( JI )
NAB( JI, 2 ) = IWORK( JI )
END IF
80 CONTINUE
END IF
*
ELSE
*
* End of Parallel Version of the loop
*
* Begin of Serial Version of the loop
*
KLNEW = KL
DO 100 JI = KF, KL
*
* Compute N(w), the number of eigenvalues less than w
*
TMP1 = C( JI )
TMP2 = D( 1 ) - TMP1
ITMP1 = 0
IF( TMP2.LE.PIVMIN ) THEN
ITMP1 = 1
TMP2 = MIN( TMP2, -PIVMIN )
END IF
*
DO 90 J = 2, N
TMP2 = D( J ) - E2( J-1 ) / TMP2 - TMP1
IF( TMP2.LE.PIVMIN ) THEN
ITMP1 = ITMP1 + 1
TMP2 = MIN( TMP2, -PIVMIN )
END IF
90 CONTINUE
*
IF( IJOB.LE.2 ) THEN
*
* IJOB=2: Choose all intervals containing eigenvalues.
*
* Insure that N(w) is monotone
*
ITMP1 = MIN( NAB( JI, 2 ),
$ MAX( NAB( JI, 1 ), ITMP1 ) )
*
* Update the Queue -- add intervals if both halves
* contain eigenvalues.
*
IF( ITMP1.EQ.NAB( JI, 2 ) ) THEN
*
* No eigenvalue in the upper interval:
* just use the lower interval.
*
AB( JI, 2 ) = TMP1
*
ELSE IF( ITMP1.EQ.NAB( JI, 1 ) ) THEN
*
* No eigenvalue in the lower interval:
* just use the upper interval.
*
AB( JI, 1 ) = TMP1
ELSE IF( KLNEW.LT.MMAX ) THEN
*
* Eigenvalue in both intervals -- add upper to queue.
*
KLNEW = KLNEW + 1
AB( KLNEW, 2 ) = AB( JI, 2 )
NAB( KLNEW, 2 ) = NAB( JI, 2 )
AB( KLNEW, 1 ) = TMP1
NAB( KLNEW, 1 ) = ITMP1
AB( JI, 2 ) = TMP1
NAB( JI, 2 ) = ITMP1
ELSE
INFO = MMAX + 1
RETURN
END IF
ELSE
*
* IJOB=3: Binary search. Keep only the interval
* containing w s.t. N(w) = NVAL
*
IF( ITMP1.LE.NVAL( JI ) ) THEN
AB( JI, 1 ) = TMP1
NAB( JI, 1 ) = ITMP1
END IF
IF( ITMP1.GE.NVAL( JI ) ) THEN
AB( JI, 2 ) = TMP1
NAB( JI, 2 ) = ITMP1
END IF
END IF
100 CONTINUE
KL = KLNEW
*
END IF
*
* Check for convergence
*
KFNEW = KF
DO 110 JI = KF, KL
TMP1 = ABS( AB( JI, 2 )-AB( JI, 1 ) )
TMP2 = MAX( ABS( AB( JI, 2 ) ), ABS( AB( JI, 1 ) ) )
IF( TMP1.LT.MAX( ABSTOL, PIVMIN, RELTOL*TMP2 ) .OR.
$ NAB( JI, 1 ).GE.NAB( JI, 2 ) ) THEN
*
* Converged -- Swap with position KFNEW,
* then increment KFNEW
*
IF( JI.GT.KFNEW ) THEN
TMP1 = AB( JI, 1 )
TMP2 = AB( JI, 2 )
ITMP1 = NAB( JI, 1 )
ITMP2 = NAB( JI, 2 )
AB( JI, 1 ) = AB( KFNEW, 1 )
AB( JI, 2 ) = AB( KFNEW, 2 )
NAB( JI, 1 ) = NAB( KFNEW, 1 )
NAB( JI, 2 ) = NAB( KFNEW, 2 )
AB( KFNEW, 1 ) = TMP1
AB( KFNEW, 2 ) = TMP2
NAB( KFNEW, 1 ) = ITMP1
NAB( KFNEW, 2 ) = ITMP2
IF( IJOB.EQ.3 ) THEN
ITMP1 = NVAL( JI )
NVAL( JI ) = NVAL( KFNEW )
NVAL( KFNEW ) = ITMP1
END IF
END IF
KFNEW = KFNEW + 1
END IF
110 CONTINUE
KF = KFNEW
*
* Choose Midpoints
*
DO 120 JI = KF, KL
C( JI ) = HALF*( AB( JI, 1 )+AB( JI, 2 ) )
120 CONTINUE
*
* If no more intervals to refine, quit.
*
IF( KF.GT.KL )
$ GO TO 140
130 CONTINUE
*
* Converged
*
140 CONTINUE
INFO = MAX( KL+1-KF, 0 )
MOUT = KL
*
RETURN
*
* End of DLAEBZ
*
END
|