1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
|
SUBROUTINE DLACON( N, V, X, ISGN, EST, KASE )
*
* -- LAPACK auxiliary routine (version 3.2) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
INTEGER KASE, N
DOUBLE PRECISION EST
* ..
* .. Array Arguments ..
INTEGER ISGN( * )
DOUBLE PRECISION V( * ), X( * )
* ..
*
* Purpose
* =======
*
* DLACON estimates the 1-norm of a square, real matrix A.
* Reverse communication is used for evaluating matrix-vector products.
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix. N >= 1.
*
* V (workspace) DOUBLE PRECISION array, dimension (N)
* On the final return, V = A*W, where EST = norm(V)/norm(W)
* (W is not returned).
*
* X (input/output) DOUBLE PRECISION array, dimension (N)
* On an intermediate return, X should be overwritten by
* A * X, if KASE=1,
* A' * X, if KASE=2,
* and DLACON must be re-called with all the other parameters
* unchanged.
*
* ISGN (workspace) INTEGER array, dimension (N)
*
* EST (input/output) DOUBLE PRECISION
* On entry with KASE = 1 or 2 and JUMP = 3, EST should be
* unchanged from the previous call to DLACON.
* On exit, EST is an estimate (a lower bound) for norm(A).
*
* KASE (input/output) INTEGER
* On the initial call to DLACON, KASE should be 0.
* On an intermediate return, KASE will be 1 or 2, indicating
* whether X should be overwritten by A * X or A' * X.
* On the final return from DLACON, KASE will again be 0.
*
* Further Details
* ======= =======
*
* Contributed by Nick Higham, University of Manchester.
* Originally named SONEST, dated March 16, 1988.
*
* Reference: N.J. Higham, "FORTRAN codes for estimating the one-norm of
* a real or complex matrix, with applications to condition estimation",
* ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.
*
* =====================================================================
*
* .. Parameters ..
INTEGER ITMAX
PARAMETER ( ITMAX = 5 )
DOUBLE PRECISION ZERO, ONE, TWO
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, ITER, J, JLAST, JUMP
DOUBLE PRECISION ALTSGN, ESTOLD, TEMP
* ..
* .. External Functions ..
INTEGER IDAMAX
DOUBLE PRECISION DASUM
EXTERNAL IDAMAX, DASUM
* ..
* .. External Subroutines ..
EXTERNAL DCOPY
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, NINT, SIGN
* ..
* .. Save statement ..
SAVE
* ..
* .. Executable Statements ..
*
IF( KASE.EQ.0 ) THEN
DO 10 I = 1, N
X( I ) = ONE / DBLE( N )
10 CONTINUE
KASE = 1
JUMP = 1
RETURN
END IF
*
GO TO ( 20, 40, 70, 110, 140 )JUMP
*
* ................ ENTRY (JUMP = 1)
* FIRST ITERATION. X HAS BEEN OVERWRITTEN BY A*X.
*
20 CONTINUE
IF( N.EQ.1 ) THEN
V( 1 ) = X( 1 )
EST = ABS( V( 1 ) )
* ... QUIT
GO TO 150
END IF
EST = DASUM( N, X, 1 )
*
DO 30 I = 1, N
X( I ) = SIGN( ONE, X( I ) )
ISGN( I ) = NINT( X( I ) )
30 CONTINUE
KASE = 2
JUMP = 2
RETURN
*
* ................ ENTRY (JUMP = 2)
* FIRST ITERATION. X HAS BEEN OVERWRITTEN BY TRANSPOSE(A)*X.
*
40 CONTINUE
J = IDAMAX( N, X, 1 )
ITER = 2
*
* MAIN LOOP - ITERATIONS 2,3,...,ITMAX.
*
50 CONTINUE
DO 60 I = 1, N
X( I ) = ZERO
60 CONTINUE
X( J ) = ONE
KASE = 1
JUMP = 3
RETURN
*
* ................ ENTRY (JUMP = 3)
* X HAS BEEN OVERWRITTEN BY A*X.
*
70 CONTINUE
CALL DCOPY( N, X, 1, V, 1 )
ESTOLD = EST
EST = DASUM( N, V, 1 )
DO 80 I = 1, N
IF( NINT( SIGN( ONE, X( I ) ) ).NE.ISGN( I ) )
$ GO TO 90
80 CONTINUE
* REPEATED SIGN VECTOR DETECTED, HENCE ALGORITHM HAS CONVERGED.
GO TO 120
*
90 CONTINUE
* TEST FOR CYCLING.
IF( EST.LE.ESTOLD )
$ GO TO 120
*
DO 100 I = 1, N
X( I ) = SIGN( ONE, X( I ) )
ISGN( I ) = NINT( X( I ) )
100 CONTINUE
KASE = 2
JUMP = 4
RETURN
*
* ................ ENTRY (JUMP = 4)
* X HAS BEEN OVERWRITTEN BY TRANSPOSE(A)*X.
*
110 CONTINUE
JLAST = J
J = IDAMAX( N, X, 1 )
IF( ( X( JLAST ).NE.ABS( X( J ) ) ) .AND. ( ITER.LT.ITMAX ) ) THEN
ITER = ITER + 1
GO TO 50
END IF
*
* ITERATION COMPLETE. FINAL STAGE.
*
120 CONTINUE
ALTSGN = ONE
DO 130 I = 1, N
X( I ) = ALTSGN*( ONE+DBLE( I-1 ) / DBLE( N-1 ) )
ALTSGN = -ALTSGN
130 CONTINUE
KASE = 1
JUMP = 5
RETURN
*
* ................ ENTRY (JUMP = 5)
* X HAS BEEN OVERWRITTEN BY A*X.
*
140 CONTINUE
TEMP = TWO*( DASUM( N, X, 1 ) / DBLE( 3*N ) )
IF( TEMP.GT.EST ) THEN
CALL DCOPY( N, X, 1, V, 1 )
EST = TEMP
END IF
*
150 CONTINUE
KASE = 0
RETURN
*
* End of DLACON
*
END
|