summaryrefslogtreecommitdiff
path: root/SRC/dgbsvx.f
blob: da4bf91036fc8e43222769ec753bf409f232efa6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
*> \brief <b> DGBSVX computes the solution to system of linear equations A * X = B for GB matrices</b>
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DGBSVX + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgbsvx.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgbsvx.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgbsvx.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE DGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
*                          LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
*                          RCOND, FERR, BERR, WORK, IWORK, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          EQUED, FACT, TRANS
*       INTEGER            INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
*       DOUBLE PRECISION   RCOND
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIV( * ), IWORK( * )
*       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
*      $                   BERR( * ), C( * ), FERR( * ), R( * ),
*      $                   WORK( * ), X( LDX, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DGBSVX uses the LU factorization to compute the solution to a real
*> system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
*> where A is a band matrix of order N with KL subdiagonals and KU
*> superdiagonals, and X and B are N-by-NRHS matrices.
*>
*> Error bounds on the solution and a condition estimate are also
*> provided.
*> \endverbatim
*
*> \par Description:
*  =================
*>
*> \verbatim
*>
*> The following steps are performed by this subroutine:
*>
*> 1. If FACT = 'E', real scaling factors are computed to equilibrate
*>    the system:
*>       TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
*>       TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
*>       TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
*>    Whether or not the system will be equilibrated depends on the
*>    scaling of the matrix A, but if equilibration is used, A is
*>    overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
*>    or diag(C)*B (if TRANS = 'T' or 'C').
*>
*> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
*>    matrix A (after equilibration if FACT = 'E') as
*>       A = L * U,
*>    where L is a product of permutation and unit lower triangular
*>    matrices with KL subdiagonals, and U is upper triangular with
*>    KL+KU superdiagonals.
*>
*> 3. If some U(i,i)=0, so that U is exactly singular, then the routine
*>    returns with INFO = i. Otherwise, the factored form of A is used
*>    to estimate the condition number of the matrix A.  If the
*>    reciprocal of the condition number is less than machine precision,
*>    INFO = N+1 is returned as a warning, but the routine still goes on
*>    to solve for X and compute error bounds as described below.
*>
*> 4. The system of equations is solved for X using the factored form
*>    of A.
*>
*> 5. Iterative refinement is applied to improve the computed solution
*>    matrix and calculate error bounds and backward error estimates
*>    for it.
*>
*> 6. If equilibration was used, the matrix X is premultiplied by
*>    diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
*>    that it solves the original system before equilibration.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] FACT
*> \verbatim
*>          FACT is CHARACTER*1
*>          Specifies whether or not the factored form of the matrix A is
*>          supplied on entry, and if not, whether the matrix A should be
*>          equilibrated before it is factored.
*>          = 'F':  On entry, AFB and IPIV contain the factored form of
*>                  A.  If EQUED is not 'N', the matrix A has been
*>                  equilibrated with scaling factors given by R and C.
*>                  AB, AFB, and IPIV are not modified.
*>          = 'N':  The matrix A will be copied to AFB and factored.
*>          = 'E':  The matrix A will be equilibrated if necessary, then
*>                  copied to AFB and factored.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*>          TRANS is CHARACTER*1
*>          Specifies the form of the system of equations.
*>          = 'N':  A * X = B     (No transpose)
*>          = 'T':  A**T * X = B  (Transpose)
*>          = 'C':  A**H * X = B  (Transpose)
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of linear equations, i.e., the order of the
*>          matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] KL
*> \verbatim
*>          KL is INTEGER
*>          The number of subdiagonals within the band of A.  KL >= 0.
*> \endverbatim
*>
*> \param[in] KU
*> \verbatim
*>          KU is INTEGER
*>          The number of superdiagonals within the band of A.  KU >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of right hand sides, i.e., the number of columns
*>          of the matrices B and X.  NRHS >= 0.
*> \endverbatim
*>
*> \param[in,out] AB
*> \verbatim
*>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
*>          On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
*>          The j-th column of A is stored in the j-th column of the
*>          array AB as follows:
*>          AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
*>
*>          If FACT = 'F' and EQUED is not 'N', then A must have been
*>          equilibrated by the scaling factors in R and/or C.  AB is not
*>          modified if FACT = 'F' or 'N', or if FACT = 'E' and
*>          EQUED = 'N' on exit.
*>
*>          On exit, if EQUED .ne. 'N', A is scaled as follows:
*>          EQUED = 'R':  A := diag(R) * A
*>          EQUED = 'C':  A := A * diag(C)
*>          EQUED = 'B':  A := diag(R) * A * diag(C).
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*>          LDAB is INTEGER
*>          The leading dimension of the array AB.  LDAB >= KL+KU+1.
*> \endverbatim
*>
*> \param[in,out] AFB
*> \verbatim
*>          AFB is DOUBLE PRECISION array, dimension (LDAFB,N)
*>          If FACT = 'F', then AFB is an input argument and on entry
*>          contains details of the LU factorization of the band matrix
*>          A, as computed by DGBTRF.  U is stored as an upper triangular
*>          band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
*>          and the multipliers used during the factorization are stored
*>          in rows KL+KU+2 to 2*KL+KU+1.  If EQUED .ne. 'N', then AFB is
*>          the factored form of the equilibrated matrix A.
*>
*>          If FACT = 'N', then AFB is an output argument and on exit
*>          returns details of the LU factorization of A.
*>
*>          If FACT = 'E', then AFB is an output argument and on exit
*>          returns details of the LU factorization of the equilibrated
*>          matrix A (see the description of AB for the form of the
*>          equilibrated matrix).
*> \endverbatim
*>
*> \param[in] LDAFB
*> \verbatim
*>          LDAFB is INTEGER
*>          The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.
*> \endverbatim
*>
*> \param[in,out] IPIV
*> \verbatim
*>          IPIV is INTEGER array, dimension (N)
*>          If FACT = 'F', then IPIV is an input argument and on entry
*>          contains the pivot indices from the factorization A = L*U
*>          as computed by DGBTRF; row i of the matrix was interchanged
*>          with row IPIV(i).
*>
*>          If FACT = 'N', then IPIV is an output argument and on exit
*>          contains the pivot indices from the factorization A = L*U
*>          of the original matrix A.
*>
*>          If FACT = 'E', then IPIV is an output argument and on exit
*>          contains the pivot indices from the factorization A = L*U
*>          of the equilibrated matrix A.
*> \endverbatim
*>
*> \param[in,out] EQUED
*> \verbatim
*>          EQUED is CHARACTER*1
*>          Specifies the form of equilibration that was done.
*>          = 'N':  No equilibration (always true if FACT = 'N').
*>          = 'R':  Row equilibration, i.e., A has been premultiplied by
*>                  diag(R).
*>          = 'C':  Column equilibration, i.e., A has been postmultiplied
*>                  by diag(C).
*>          = 'B':  Both row and column equilibration, i.e., A has been
*>                  replaced by diag(R) * A * diag(C).
*>          EQUED is an input argument if FACT = 'F'; otherwise, it is an
*>          output argument.
*> \endverbatim
*>
*> \param[in,out] R
*> \verbatim
*>          R is DOUBLE PRECISION array, dimension (N)
*>          The row scale factors for A.  If EQUED = 'R' or 'B', A is
*>          multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
*>          is not accessed.  R is an input argument if FACT = 'F';
*>          otherwise, R is an output argument.  If FACT = 'F' and
*>          EQUED = 'R' or 'B', each element of R must be positive.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*>          C is DOUBLE PRECISION array, dimension (N)
*>          The column scale factors for A.  If EQUED = 'C' or 'B', A is
*>          multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
*>          is not accessed.  C is an input argument if FACT = 'F';
*>          otherwise, C is an output argument.  If FACT = 'F' and
*>          EQUED = 'C' or 'B', each element of C must be positive.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
*>          On entry, the right hand side matrix B.
*>          On exit,
*>          if EQUED = 'N', B is not modified;
*>          if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
*>          diag(R)*B;
*>          if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
*>          overwritten by diag(C)*B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
*>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
*>          to the original system of equations.  Note that A and B are
*>          modified on exit if EQUED .ne. 'N', and the solution to the
*>          equilibrated system is inv(diag(C))*X if TRANS = 'N' and
*>          EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
*>          and EQUED = 'R' or 'B'.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*>          LDX is INTEGER
*>          The leading dimension of the array X.  LDX >= max(1,N).
*> \endverbatim
*>
*> \param[out] RCOND
*> \verbatim
*>          RCOND is DOUBLE PRECISION
*>          The estimate of the reciprocal condition number of the matrix
*>          A after equilibration (if done).  If RCOND is less than the
*>          machine precision (in particular, if RCOND = 0), the matrix
*>          is singular to working precision.  This condition is
*>          indicated by a return code of INFO > 0.
*> \endverbatim
*>
*> \param[out] FERR
*> \verbatim
*>          FERR is DOUBLE PRECISION array, dimension (NRHS)
*>          The estimated forward error bound for each solution vector
*>          X(j) (the j-th column of the solution matrix X).
*>          If XTRUE is the true solution corresponding to X(j), FERR(j)
*>          is an estimated upper bound for the magnitude of the largest
*>          element in (X(j) - XTRUE) divided by the magnitude of the
*>          largest element in X(j).  The estimate is as reliable as
*>          the estimate for RCOND, and is almost always a slight
*>          overestimate of the true error.
*> \endverbatim
*>
*> \param[out] BERR
*> \verbatim
*>          BERR is DOUBLE PRECISION array, dimension (NRHS)
*>          The componentwise relative backward error of each solution
*>          vector X(j) (i.e., the smallest relative change in
*>          any element of A or B that makes X(j) an exact solution).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is DOUBLE PRECISION array, dimension (3*N)
*>          On exit, WORK(1) contains the reciprocal pivot growth
*>          factor norm(A)/norm(U). The "max absolute element" norm is
*>          used. If WORK(1) is much less than 1, then the stability
*>          of the LU factorization of the (equilibrated) matrix A
*>          could be poor. This also means that the solution X, condition
*>          estimator RCOND, and forward error bound FERR could be
*>          unreliable. If factorization fails with 0<INFO<=N, then
*>          WORK(1) contains the reciprocal pivot growth factor for the
*>          leading INFO columns of A.
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*>          IWORK is INTEGER array, dimension (N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*>          > 0:  if INFO = i, and i is
*>                <= N:  U(i,i) is exactly zero.  The factorization
*>                       has been completed, but the factor U is exactly
*>                       singular, so the solution and error bounds
*>                       could not be computed. RCOND = 0 is returned.
*>                = N+1: U is nonsingular, but RCOND is less than machine
*>                       precision, meaning that the matrix is singular
*>                       to working precision.  Nevertheless, the
*>                       solution and error bounds are computed because
*>                       there are a number of situations where the
*>                       computed solution can be more accurate than the
*>                       value of RCOND would suggest.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date April 2012
*
*> \ingroup doubleGBsolve
*
*  =====================================================================
      SUBROUTINE DGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
     $                   LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
     $                   RCOND, FERR, BERR, WORK, IWORK, INFO )
*
*  -- LAPACK driver routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     April 2012
*
*     .. Scalar Arguments ..
      CHARACTER          EQUED, FACT, TRANS
      INTEGER            INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
      DOUBLE PRECISION   RCOND
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * ), IWORK( * )
      DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
     $                   BERR( * ), C( * ), FERR( * ), R( * ),
     $                   WORK( * ), X( LDX, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
      CHARACTER          NORM
      INTEGER            I, INFEQU, J, J1, J2
      DOUBLE PRECISION   AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN,
     $                   ROWCND, RPVGRW, SMLNUM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, DLANGB, DLANTB
      EXTERNAL           LSAME, DLAMCH, DLANGB, DLANTB
*     ..
*     .. External Subroutines ..
      EXTERNAL           DCOPY, DGBCON, DGBEQU, DGBRFS, DGBTRF, DGBTRS,
     $                   DLACPY, DLAQGB, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      NOFACT = LSAME( FACT, 'N' )
      EQUIL = LSAME( FACT, 'E' )
      NOTRAN = LSAME( TRANS, 'N' )
      IF( NOFACT .OR. EQUIL ) THEN
         EQUED = 'N'
         ROWEQU = .FALSE.
         COLEQU = .FALSE.
      ELSE
         ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
         COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
         SMLNUM = DLAMCH( 'Safe minimum' )
         BIGNUM = ONE / SMLNUM
      END IF
*
*     Test the input parameters.
*
      IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
     $     THEN
         INFO = -1
      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
     $         LSAME( TRANS, 'C' ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( KL.LT.0 ) THEN
         INFO = -4
      ELSE IF( KU.LT.0 ) THEN
         INFO = -5
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -6
      ELSE IF( LDAB.LT.KL+KU+1 ) THEN
         INFO = -8
      ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
         INFO = -10
      ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
     $         ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
         INFO = -12
      ELSE
         IF( ROWEQU ) THEN
            RCMIN = BIGNUM
            RCMAX = ZERO
            DO 10 J = 1, N
               RCMIN = MIN( RCMIN, R( J ) )
               RCMAX = MAX( RCMAX, R( J ) )
   10       CONTINUE
            IF( RCMIN.LE.ZERO ) THEN
               INFO = -13
            ELSE IF( N.GT.0 ) THEN
               ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
            ELSE
               ROWCND = ONE
            END IF
         END IF
         IF( COLEQU .AND. INFO.EQ.0 ) THEN
            RCMIN = BIGNUM
            RCMAX = ZERO
            DO 20 J = 1, N
               RCMIN = MIN( RCMIN, C( J ) )
               RCMAX = MAX( RCMAX, C( J ) )
   20       CONTINUE
            IF( RCMIN.LE.ZERO ) THEN
               INFO = -14
            ELSE IF( N.GT.0 ) THEN
               COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
            ELSE
               COLCND = ONE
            END IF
         END IF
         IF( INFO.EQ.0 ) THEN
            IF( LDB.LT.MAX( 1, N ) ) THEN
               INFO = -16
            ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
               INFO = -18
            END IF
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DGBSVX', -INFO )
         RETURN
      END IF
*
      IF( EQUIL ) THEN
*
*        Compute row and column scalings to equilibrate the matrix A.
*
         CALL DGBEQU( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
     $                AMAX, INFEQU )
         IF( INFEQU.EQ.0 ) THEN
*
*           Equilibrate the matrix.
*
            CALL DLAQGB( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
     $                   AMAX, EQUED )
            ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
            COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
         END IF
      END IF
*
*     Scale the right hand side.
*
      IF( NOTRAN ) THEN
         IF( ROWEQU ) THEN
            DO 40 J = 1, NRHS
               DO 30 I = 1, N
                  B( I, J ) = R( I )*B( I, J )
   30          CONTINUE
   40       CONTINUE
         END IF
      ELSE IF( COLEQU ) THEN
         DO 60 J = 1, NRHS
            DO 50 I = 1, N
               B( I, J ) = C( I )*B( I, J )
   50       CONTINUE
   60    CONTINUE
      END IF
*
      IF( NOFACT .OR. EQUIL ) THEN
*
*        Compute the LU factorization of the band matrix A.
*
         DO 70 J = 1, N
            J1 = MAX( J-KU, 1 )
            J2 = MIN( J+KL, N )
            CALL DCOPY( J2-J1+1, AB( KU+1-J+J1, J ), 1,
     $                  AFB( KL+KU+1-J+J1, J ), 1 )
   70    CONTINUE
*
         CALL DGBTRF( N, N, KL, KU, AFB, LDAFB, IPIV, INFO )
*
*        Return if INFO is non-zero.
*
         IF( INFO.GT.0 ) THEN
*
*           Compute the reciprocal pivot growth factor of the
*           leading rank-deficient INFO columns of A.
*
            ANORM = ZERO
            DO 90 J = 1, INFO
               DO 80 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
                  ANORM = MAX( ANORM, ABS( AB( I, J ) ) )
   80          CONTINUE
   90       CONTINUE
            RPVGRW = DLANTB( 'M', 'U', 'N', INFO, MIN( INFO-1, KL+KU ),
     $                       AFB( MAX( 1, KL+KU+2-INFO ), 1 ), LDAFB,
     $                       WORK )
            IF( RPVGRW.EQ.ZERO ) THEN
               RPVGRW = ONE
            ELSE
               RPVGRW = ANORM / RPVGRW
            END IF
            WORK( 1 ) = RPVGRW
            RCOND = ZERO
            RETURN
         END IF
      END IF
*
*     Compute the norm of the matrix A and the
*     reciprocal pivot growth factor RPVGRW.
*
      IF( NOTRAN ) THEN
         NORM = '1'
      ELSE
         NORM = 'I'
      END IF
      ANORM = DLANGB( NORM, N, KL, KU, AB, LDAB, WORK )
      RPVGRW = DLANTB( 'M', 'U', 'N', N, KL+KU, AFB, LDAFB, WORK )
      IF( RPVGRW.EQ.ZERO ) THEN
         RPVGRW = ONE
      ELSE
         RPVGRW = DLANGB( 'M', N, KL, KU, AB, LDAB, WORK ) / RPVGRW
      END IF
*
*     Compute the reciprocal of the condition number of A.
*
      CALL DGBCON( NORM, N, KL, KU, AFB, LDAFB, IPIV, ANORM, RCOND,
     $             WORK, IWORK, INFO )
*
*     Compute the solution matrix X.
*
      CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
      CALL DGBTRS( TRANS, N, KL, KU, NRHS, AFB, LDAFB, IPIV, X, LDX,
     $             INFO )
*
*     Use iterative refinement to improve the computed solution and
*     compute error bounds and backward error estimates for it.
*
      CALL DGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV,
     $             B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
*
*     Transform the solution matrix X to a solution of the original
*     system.
*
      IF( NOTRAN ) THEN
         IF( COLEQU ) THEN
            DO 110 J = 1, NRHS
               DO 100 I = 1, N
                  X( I, J ) = C( I )*X( I, J )
  100          CONTINUE
  110       CONTINUE
            DO 120 J = 1, NRHS
               FERR( J ) = FERR( J ) / COLCND
  120       CONTINUE
         END IF
      ELSE IF( ROWEQU ) THEN
         DO 140 J = 1, NRHS
            DO 130 I = 1, N
               X( I, J ) = R( I )*X( I, J )
  130       CONTINUE
  140    CONTINUE
         DO 150 J = 1, NRHS
            FERR( J ) = FERR( J ) / ROWCND
  150    CONTINUE
      END IF
*
*     Set INFO = N+1 if the matrix is singular to working precision.
*
      IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
     $   INFO = N + 1
*
      WORK( 1 ) = RPVGRW
      RETURN
*
*     End of DGBSVX
*
      END