summaryrefslogtreecommitdiff
path: root/SRC/dbdsdc.f
blob: edc8724af190293e37caae55a8d7451b98861def (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
*> \brief \b DBDSDC
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DBDSDC + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dbdsdc.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dbdsdc.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dbdsdc.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE DBDSDC( UPLO, COMPQ, N, D, E, U, LDU, VT, LDVT, Q, IQ,
*                          WORK, IWORK, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          COMPQ, UPLO
*       INTEGER            INFO, LDU, LDVT, N
*       ..
*       .. Array Arguments ..
*       INTEGER            IQ( * ), IWORK( * )
*       DOUBLE PRECISION   D( * ), E( * ), Q( * ), U( LDU, * ),
*      $                   VT( LDVT, * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DBDSDC computes the singular value decomposition (SVD) of a real
*> N-by-N (upper or lower) bidiagonal matrix B:  B = U * S * VT,
*> using a divide and conquer method, where S is a diagonal matrix
*> with non-negative diagonal elements (the singular values of B), and
*> U and VT are orthogonal matrices of left and right singular vectors,
*> respectively. DBDSDC can be used to compute all singular values,
*> and optionally, singular vectors or singular vectors in compact form.
*>
*> This code makes very mild assumptions about floating point
*> arithmetic. It will work on machines with a guard digit in
*> add/subtract, or on those binary machines without guard digits
*> which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
*> It could conceivably fail on hexadecimal or decimal machines
*> without guard digits, but we know of none.  See DLASD3 for details.
*>
*> The code currently calls DLASDQ if singular values only are desired.
*> However, it can be slightly modified to compute singular values
*> using the divide and conquer method.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          = 'U':  B is upper bidiagonal.
*>          = 'L':  B is lower bidiagonal.
*> \endverbatim
*>
*> \param[in] COMPQ
*> \verbatim
*>          COMPQ is CHARACTER*1
*>          Specifies whether singular vectors are to be computed
*>          as follows:
*>          = 'N':  Compute singular values only;
*>          = 'P':  Compute singular values and compute singular
*>                  vectors in compact form;
*>          = 'I':  Compute singular values and singular vectors.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix B.  N >= 0.
*> \endverbatim
*>
*> \param[in,out] D
*> \verbatim
*>          D is DOUBLE PRECISION array, dimension (N)
*>          On entry, the n diagonal elements of the bidiagonal matrix B.
*>          On exit, if INFO=0, the singular values of B.
*> \endverbatim
*>
*> \param[in,out] E
*> \verbatim
*>          E is DOUBLE PRECISION array, dimension (N-1)
*>          On entry, the elements of E contain the offdiagonal
*>          elements of the bidiagonal matrix whose SVD is desired.
*>          On exit, E has been destroyed.
*> \endverbatim
*>
*> \param[out] U
*> \verbatim
*>          U is DOUBLE PRECISION array, dimension (LDU,N)
*>          If  COMPQ = 'I', then:
*>             On exit, if INFO = 0, U contains the left singular vectors
*>             of the bidiagonal matrix.
*>          For other values of COMPQ, U is not referenced.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*>          LDU is INTEGER
*>          The leading dimension of the array U.  LDU >= 1.
*>          If singular vectors are desired, then LDU >= max( 1, N ).
*> \endverbatim
*>
*> \param[out] VT
*> \verbatim
*>          VT is DOUBLE PRECISION array, dimension (LDVT,N)
*>          If  COMPQ = 'I', then:
*>             On exit, if INFO = 0, VT**T contains the right singular
*>             vectors of the bidiagonal matrix.
*>          For other values of COMPQ, VT is not referenced.
*> \endverbatim
*>
*> \param[in] LDVT
*> \verbatim
*>          LDVT is INTEGER
*>          The leading dimension of the array VT.  LDVT >= 1.
*>          If singular vectors are desired, then LDVT >= max( 1, N ).
*> \endverbatim
*>
*> \param[out] Q
*> \verbatim
*>          Q is DOUBLE PRECISION array, dimension (LDQ)
*>          If  COMPQ = 'P', then:
*>             On exit, if INFO = 0, Q and IQ contain the left
*>             and right singular vectors in a compact form,
*>             requiring O(N log N) space instead of 2*N**2.
*>             In particular, Q contains all the DOUBLE PRECISION data in
*>             LDQ >= N*(11 + 2*SMLSIZ + 8*INT(LOG_2(N/(SMLSIZ+1))))
*>             words of memory, where SMLSIZ is returned by ILAENV and
*>             is equal to the maximum size of the subproblems at the
*>             bottom of the computation tree (usually about 25).
*>          For other values of COMPQ, Q is not referenced.
*> \endverbatim
*>
*> \param[out] IQ
*> \verbatim
*>          IQ is INTEGER array, dimension (LDIQ)
*>          If  COMPQ = 'P', then:
*>             On exit, if INFO = 0, Q and IQ contain the left
*>             and right singular vectors in a compact form,
*>             requiring O(N log N) space instead of 2*N**2.
*>             In particular, IQ contains all INTEGER data in
*>             LDIQ >= N*(3 + 3*INT(LOG_2(N/(SMLSIZ+1))))
*>             words of memory, where SMLSIZ is returned by ILAENV and
*>             is equal to the maximum size of the subproblems at the
*>             bottom of the computation tree (usually about 25).
*>          For other values of COMPQ, IQ is not referenced.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
*>          If COMPQ = 'N' then LWORK >= (4 * N).
*>          If COMPQ = 'P' then LWORK >= (6 * N).
*>          If COMPQ = 'I' then LWORK >= (3 * N**2 + 4 * N).
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*>          IWORK is INTEGER array, dimension (8*N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit.
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
*>          > 0:  The algorithm failed to compute a singular value.
*>                The update process of divide and conquer failed.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date June 2016
*
*> \ingroup auxOTHERcomputational
*
*> \par Contributors:
*  ==================
*>
*>     Ming Gu and Huan Ren, Computer Science Division, University of
*>     California at Berkeley, USA
*>
*  =====================================================================
      SUBROUTINE DBDSDC( UPLO, COMPQ, N, D, E, U, LDU, VT, LDVT, Q, IQ,
     $                   WORK, IWORK, INFO )
*
*  -- LAPACK computational routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     June 2016
*
*     .. Scalar Arguments ..
      CHARACTER          COMPQ, UPLO
      INTEGER            INFO, LDU, LDVT, N
*     ..
*     .. Array Arguments ..
      INTEGER            IQ( * ), IWORK( * )
      DOUBLE PRECISION   D( * ), E( * ), Q( * ), U( LDU, * ),
     $                   VT( LDVT, * ), WORK( * )
*     ..
*
*  =====================================================================
*  Changed dimension statement in comment describing E from (N) to
*  (N-1).  Sven, 17 Feb 05.
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, TWO
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            DIFL, DIFR, GIVCOL, GIVNUM, GIVPTR, I, IC,
     $                   ICOMPQ, IERR, II, IS, IU, IUPLO, IVT, J, K, KK,
     $                   MLVL, NM1, NSIZE, PERM, POLES, QSTART, SMLSIZ,
     $                   SMLSZP, SQRE, START, WSTART, Z
      DOUBLE PRECISION   CS, EPS, ORGNRM, P, R, SN
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      DOUBLE PRECISION   DLAMCH, DLANST
      EXTERNAL           LSAME, ILAENV, DLAMCH, DLANST
*     ..
*     .. External Subroutines ..
      EXTERNAL           DCOPY, DLARTG, DLASCL, DLASD0, DLASDA, DLASDQ,
     $                   DLASET, DLASR, DSWAP, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, INT, LOG, SIGN
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
*
      IUPLO = 0
      IF( LSAME( UPLO, 'U' ) )
     $   IUPLO = 1
      IF( LSAME( UPLO, 'L' ) )
     $   IUPLO = 2
      IF( LSAME( COMPQ, 'N' ) ) THEN
         ICOMPQ = 0
      ELSE IF( LSAME( COMPQ, 'P' ) ) THEN
         ICOMPQ = 1
      ELSE IF( LSAME( COMPQ, 'I' ) ) THEN
         ICOMPQ = 2
      ELSE
         ICOMPQ = -1
      END IF
      IF( IUPLO.EQ.0 ) THEN
         INFO = -1
      ELSE IF( ICOMPQ.LT.0 ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( ( LDU.LT.1 ) .OR. ( ( ICOMPQ.EQ.2 ) .AND. ( LDU.LT.
     $         N ) ) ) THEN
         INFO = -7
      ELSE IF( ( LDVT.LT.1 ) .OR. ( ( ICOMPQ.EQ.2 ) .AND. ( LDVT.LT.
     $         N ) ) ) THEN
         INFO = -9
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DBDSDC', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
      SMLSIZ = ILAENV( 9, 'DBDSDC', ' ', 0, 0, 0, 0 )
      IF( N.EQ.1 ) THEN
         IF( ICOMPQ.EQ.1 ) THEN
            Q( 1 ) = SIGN( ONE, D( 1 ) )
            Q( 1+SMLSIZ*N ) = ONE
         ELSE IF( ICOMPQ.EQ.2 ) THEN
            U( 1, 1 ) = SIGN( ONE, D( 1 ) )
            VT( 1, 1 ) = ONE
         END IF
         D( 1 ) = ABS( D( 1 ) )
         RETURN
      END IF
      NM1 = N - 1
*
*     If matrix lower bidiagonal, rotate to be upper bidiagonal
*     by applying Givens rotations on the left
*
      WSTART = 1
      QSTART = 3
      IF( ICOMPQ.EQ.1 ) THEN
         CALL DCOPY( N, D, 1, Q( 1 ), 1 )
         CALL DCOPY( N-1, E, 1, Q( N+1 ), 1 )
      END IF
      IF( IUPLO.EQ.2 ) THEN
         QSTART = 5
         IF( ICOMPQ .EQ. 2 ) WSTART = 2*N - 1
         DO 10 I = 1, N - 1
            CALL DLARTG( D( I ), E( I ), CS, SN, R )
            D( I ) = R
            E( I ) = SN*D( I+1 )
            D( I+1 ) = CS*D( I+1 )
            IF( ICOMPQ.EQ.1 ) THEN
               Q( I+2*N ) = CS
               Q( I+3*N ) = SN
            ELSE IF( ICOMPQ.EQ.2 ) THEN
               WORK( I ) = CS
               WORK( NM1+I ) = -SN
            END IF
   10    CONTINUE
      END IF
*
*     If ICOMPQ = 0, use DLASDQ to compute the singular values.
*
      IF( ICOMPQ.EQ.0 ) THEN
*        Ignore WSTART, instead using WORK( 1 ), since the two vectors
*        for CS and -SN above are added only if ICOMPQ == 2,
*        and adding them exceeds documented WORK size of 4*n.
         CALL DLASDQ( 'U', 0, N, 0, 0, 0, D, E, VT, LDVT, U, LDU, U,
     $                LDU, WORK( 1 ), INFO )
         GO TO 40
      END IF
*
*     If N is smaller than the minimum divide size SMLSIZ, then solve
*     the problem with another solver.
*
      IF( N.LE.SMLSIZ ) THEN
         IF( ICOMPQ.EQ.2 ) THEN
            CALL DLASET( 'A', N, N, ZERO, ONE, U, LDU )
            CALL DLASET( 'A', N, N, ZERO, ONE, VT, LDVT )
            CALL DLASDQ( 'U', 0, N, N, N, 0, D, E, VT, LDVT, U, LDU, U,
     $                   LDU, WORK( WSTART ), INFO )
         ELSE IF( ICOMPQ.EQ.1 ) THEN
            IU = 1
            IVT = IU + N
            CALL DLASET( 'A', N, N, ZERO, ONE, Q( IU+( QSTART-1 )*N ),
     $                   N )
            CALL DLASET( 'A', N, N, ZERO, ONE, Q( IVT+( QSTART-1 )*N ),
     $                   N )
            CALL DLASDQ( 'U', 0, N, N, N, 0, D, E,
     $                   Q( IVT+( QSTART-1 )*N ), N,
     $                   Q( IU+( QSTART-1 )*N ), N,
     $                   Q( IU+( QSTART-1 )*N ), N, WORK( WSTART ),
     $                   INFO )
         END IF
         GO TO 40
      END IF
*
      IF( ICOMPQ.EQ.2 ) THEN
         CALL DLASET( 'A', N, N, ZERO, ONE, U, LDU )
         CALL DLASET( 'A', N, N, ZERO, ONE, VT, LDVT )
      END IF
*
*     Scale.
*
      ORGNRM = DLANST( 'M', N, D, E )
      IF( ORGNRM.EQ.ZERO )
     $   RETURN
      CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, IERR )
      CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, NM1, 1, E, NM1, IERR )
*
      EPS = (0.9D+0)*DLAMCH( 'Epsilon' )
*
      MLVL = INT( LOG( DBLE( N ) / DBLE( SMLSIZ+1 ) ) / LOG( TWO ) ) + 1
      SMLSZP = SMLSIZ + 1
*
      IF( ICOMPQ.EQ.1 ) THEN
         IU = 1
         IVT = 1 + SMLSIZ
         DIFL = IVT + SMLSZP
         DIFR = DIFL + MLVL
         Z = DIFR + MLVL*2
         IC = Z + MLVL
         IS = IC + 1
         POLES = IS + 1
         GIVNUM = POLES + 2*MLVL
*
         K = 1
         GIVPTR = 2
         PERM = 3
         GIVCOL = PERM + MLVL
      END IF
*
      DO 20 I = 1, N
         IF( ABS( D( I ) ).LT.EPS ) THEN
            D( I ) = SIGN( EPS, D( I ) )
         END IF
   20 CONTINUE
*
      START = 1
      SQRE = 0
*
      DO 30 I = 1, NM1
         IF( ( ABS( E( I ) ).LT.EPS ) .OR. ( I.EQ.NM1 ) ) THEN
*
*           Subproblem found. First determine its size and then
*           apply divide and conquer on it.
*
            IF( I.LT.NM1 ) THEN
*
*              A subproblem with E(I) small for I < NM1.
*
               NSIZE = I - START + 1
            ELSE IF( ABS( E( I ) ).GE.EPS ) THEN
*
*              A subproblem with E(NM1) not too small but I = NM1.
*
               NSIZE = N - START + 1
            ELSE
*
*              A subproblem with E(NM1) small. This implies an
*              1-by-1 subproblem at D(N). Solve this 1-by-1 problem
*              first.
*
               NSIZE = I - START + 1
               IF( ICOMPQ.EQ.2 ) THEN
                  U( N, N ) = SIGN( ONE, D( N ) )
                  VT( N, N ) = ONE
               ELSE IF( ICOMPQ.EQ.1 ) THEN
                  Q( N+( QSTART-1 )*N ) = SIGN( ONE, D( N ) )
                  Q( N+( SMLSIZ+QSTART-1 )*N ) = ONE
               END IF
               D( N ) = ABS( D( N ) )
            END IF
            IF( ICOMPQ.EQ.2 ) THEN
               CALL DLASD0( NSIZE, SQRE, D( START ), E( START ),
     $                      U( START, START ), LDU, VT( START, START ),
     $                      LDVT, SMLSIZ, IWORK, WORK( WSTART ), INFO )
            ELSE
               CALL DLASDA( ICOMPQ, SMLSIZ, NSIZE, SQRE, D( START ),
     $                      E( START ), Q( START+( IU+QSTART-2 )*N ), N,
     $                      Q( START+( IVT+QSTART-2 )*N ),
     $                      IQ( START+K*N ), Q( START+( DIFL+QSTART-2 )*
     $                      N ), Q( START+( DIFR+QSTART-2 )*N ),
     $                      Q( START+( Z+QSTART-2 )*N ),
     $                      Q( START+( POLES+QSTART-2 )*N ),
     $                      IQ( START+GIVPTR*N ), IQ( START+GIVCOL*N ),
     $                      N, IQ( START+PERM*N ),
     $                      Q( START+( GIVNUM+QSTART-2 )*N ),
     $                      Q( START+( IC+QSTART-2 )*N ),
     $                      Q( START+( IS+QSTART-2 )*N ),
     $                      WORK( WSTART ), IWORK, INFO )
            END IF
            IF( INFO.NE.0 ) THEN
               RETURN
            END IF
            START = I + 1
         END IF
   30 CONTINUE
*
*     Unscale
*
      CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, IERR )
   40 CONTINUE
*
*     Use Selection Sort to minimize swaps of singular vectors
*
      DO 60 II = 2, N
         I = II - 1
         KK = I
         P = D( I )
         DO 50 J = II, N
            IF( D( J ).GT.P ) THEN
               KK = J
               P = D( J )
            END IF
   50    CONTINUE
         IF( KK.NE.I ) THEN
            D( KK ) = D( I )
            D( I ) = P
            IF( ICOMPQ.EQ.1 ) THEN
               IQ( I ) = KK
            ELSE IF( ICOMPQ.EQ.2 ) THEN
               CALL DSWAP( N, U( 1, I ), 1, U( 1, KK ), 1 )
               CALL DSWAP( N, VT( I, 1 ), LDVT, VT( KK, 1 ), LDVT )
            END IF
         ELSE IF( ICOMPQ.EQ.1 ) THEN
            IQ( I ) = I
         END IF
   60 CONTINUE
*
*     If ICOMPQ = 1, use IQ(N,1) as the indicator for UPLO
*
      IF( ICOMPQ.EQ.1 ) THEN
         IF( IUPLO.EQ.1 ) THEN
            IQ( N ) = 1
         ELSE
            IQ( N ) = 0
         END IF
      END IF
*
*     If B is lower bidiagonal, update U by those Givens rotations
*     which rotated B to be upper bidiagonal
*
      IF( ( IUPLO.EQ.2 ) .AND. ( ICOMPQ.EQ.2 ) )
     $   CALL DLASR( 'L', 'V', 'B', N, N, WORK( 1 ), WORK( N ), U, LDU )
*
      RETURN
*
*     End of DBDSDC
*
      END