1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
|
SUBROUTINE CUNMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
$ WORK, LWORK, INFO )
*
* -- LAPACK routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* .. Scalar Arguments ..
CHARACTER SIDE, TRANS
INTEGER INFO, K, LDA, LDC, LWORK, M, N
* ..
* .. Array Arguments ..
COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ),
$ WORK( * )
* ..
*
* Purpose
* =======
*
* CUNMQR overwrites the general complex M-by-N matrix C with
*
* SIDE = 'L' SIDE = 'R'
* TRANS = 'N': Q * C C * Q
* TRANS = 'C': Q**H * C C * Q**H
*
* where Q is a complex unitary matrix defined as the product of k
* elementary reflectors
*
* Q = H(1) H(2) . . . H(k)
*
* as returned by CGEQRF. Q is of order M if SIDE = 'L' and of order N
* if SIDE = 'R'.
*
* Arguments
* =========
*
* SIDE (input) CHARACTER*1
* = 'L': apply Q or Q**H from the Left;
* = 'R': apply Q or Q**H from the Right.
*
* TRANS (input) CHARACTER*1
* = 'N': No transpose, apply Q;
* = 'C': Conjugate transpose, apply Q**H.
*
* M (input) INTEGER
* The number of rows of the matrix C. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix C. N >= 0.
*
* K (input) INTEGER
* The number of elementary reflectors whose product defines
* the matrix Q.
* If SIDE = 'L', M >= K >= 0;
* if SIDE = 'R', N >= K >= 0.
*
* A (input) COMPLEX array, dimension (LDA,K)
* The i-th column must contain the vector which defines the
* elementary reflector H(i), for i = 1,2,...,k, as returned by
* CGEQRF in the first k columns of its array argument A.
* A is modified by the routine but restored on exit.
*
* LDA (input) INTEGER
* The leading dimension of the array A.
* If SIDE = 'L', LDA >= max(1,M);
* if SIDE = 'R', LDA >= max(1,N).
*
* TAU (input) COMPLEX array, dimension (K)
* TAU(i) must contain the scalar factor of the elementary
* reflector H(i), as returned by CGEQRF.
*
* C (input/output) COMPLEX array, dimension (LDC,N)
* On entry, the M-by-N matrix C.
* On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
*
* LDC (input) INTEGER
* The leading dimension of the array C. LDC >= max(1,M).
*
* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK.
* If SIDE = 'L', LWORK >= max(1,N);
* if SIDE = 'R', LWORK >= max(1,M).
* For optimum performance LWORK >= N*NB if SIDE = 'L', and
* LWORK >= M*NB if SIDE = 'R', where NB is the optimal
* blocksize.
*
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the optimal size of the WORK array, returns
* this value as the first entry of the WORK array, and no error
* message related to LWORK is issued by XERBLA.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Parameters ..
INTEGER NBMAX, LDT
PARAMETER ( NBMAX = 64, LDT = NBMAX+1 )
* ..
* .. Local Scalars ..
LOGICAL LEFT, LQUERY, NOTRAN
INTEGER I, I1, I2, I3, IB, IC, IINFO, IWS, JC, LDWORK,
$ LWKOPT, MI, NB, NBMIN, NI, NQ, NW
* ..
* .. Local Arrays ..
COMPLEX T( LDT, NBMAX )
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
EXTERNAL LSAME, ILAENV
* ..
* .. External Subroutines ..
EXTERNAL CLARFB, CLARFT, CUNM2R, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
LEFT = LSAME( SIDE, 'L' )
NOTRAN = LSAME( TRANS, 'N' )
LQUERY = ( LWORK.EQ.-1 )
*
* NQ is the order of Q and NW is the minimum dimension of WORK
*
IF( LEFT ) THEN
NQ = M
NW = N
ELSE
NQ = N
NW = M
END IF
IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
INFO = -1
ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
INFO = -2
ELSE IF( M.LT.0 ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN
INFO = -7
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
INFO = -10
ELSE IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN
INFO = -12
END IF
*
IF( INFO.EQ.0 ) THEN
*
* Determine the block size. NB may be at most NBMAX, where NBMAX
* is used to define the local array T.
*
NB = MIN( NBMAX, ILAENV( 1, 'CUNMQR', SIDE // TRANS, M, N, K,
$ -1 ) )
LWKOPT = MAX( 1, NW )*NB
WORK( 1 ) = LWKOPT
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CUNMQR', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) THEN
WORK( 1 ) = 1
RETURN
END IF
*
NBMIN = 2
LDWORK = NW
IF( NB.GT.1 .AND. NB.LT.K ) THEN
IWS = NW*NB
IF( LWORK.LT.IWS ) THEN
NB = LWORK / LDWORK
NBMIN = MAX( 2, ILAENV( 2, 'CUNMQR', SIDE // TRANS, M, N, K,
$ -1 ) )
END IF
ELSE
IWS = NW
END IF
*
IF( NB.LT.NBMIN .OR. NB.GE.K ) THEN
*
* Use unblocked code
*
CALL CUNM2R( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
$ IINFO )
ELSE
*
* Use blocked code
*
IF( ( LEFT .AND. .NOT.NOTRAN ) .OR.
$ ( .NOT.LEFT .AND. NOTRAN ) ) THEN
I1 = 1
I2 = K
I3 = NB
ELSE
I1 = ( ( K-1 ) / NB )*NB + 1
I2 = 1
I3 = -NB
END IF
*
IF( LEFT ) THEN
NI = N
JC = 1
ELSE
MI = M
IC = 1
END IF
*
DO 10 I = I1, I2, I3
IB = MIN( NB, K-I+1 )
*
* Form the triangular factor of the block reflector
* H = H(i) H(i+1) . . . H(i+ib-1)
*
CALL CLARFT( 'Forward', 'Columnwise', NQ-I+1, IB, A( I, I ),
$ LDA, TAU( I ), T, LDT )
IF( LEFT ) THEN
*
* H or H' is applied to C(i:m,1:n)
*
MI = M - I + 1
IC = I
ELSE
*
* H or H' is applied to C(1:m,i:n)
*
NI = N - I + 1
JC = I
END IF
*
* Apply H or H'
*
CALL CLARFB( SIDE, TRANS, 'Forward', 'Columnwise', MI, NI,
$ IB, A( I, I ), LDA, T, LDT, C( IC, JC ), LDC,
$ WORK, LDWORK )
10 CONTINUE
END IF
WORK( 1 ) = LWKOPT
RETURN
*
* End of CUNMQR
*
END
|