summaryrefslogtreecommitdiff
path: root/SRC/cungr2.f
blob: 4e75e51dd9ed490404ef879ac1ebc4fb9abb6ba8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
      SUBROUTINE CUNGR2( M, N, K, A, LDA, TAU, WORK, INFO )
*
*  -- LAPACK routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            INFO, K, LDA, M, N
*     ..
*     .. Array Arguments ..
      COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  CUNGR2 generates an m by n complex matrix Q with orthonormal rows,
*  which is defined as the last m rows of a product of k elementary
*  reflectors of order n
*
*        Q  =  H(1)' H(2)' . . . H(k)'
*
*  as returned by CGERQF.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix Q. M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix Q. N >= M.
*
*  K       (input) INTEGER
*          The number of elementary reflectors whose product defines the
*          matrix Q. M >= K >= 0.
*
*  A       (input/output) COMPLEX array, dimension (LDA,N)
*          On entry, the (m-k+i)-th row must contain the vector which
*          defines the elementary reflector H(i), for i = 1,2,...,k, as
*          returned by CGERQF in the last k rows of its array argument
*          A.
*          On exit, the m-by-n matrix Q.
*
*  LDA     (input) INTEGER
*          The first dimension of the array A. LDA >= max(1,M).
*
*  TAU     (input) COMPLEX array, dimension (K)
*          TAU(i) must contain the scalar factor of the elementary
*          reflector H(i), as returned by CGERQF.
*
*  WORK    (workspace) COMPLEX array, dimension (M)
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument has an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            ONE, ZERO
      PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ),
     $                   ZERO = ( 0.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, II, J, L
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLACGV, CLARF, CSCAL, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CONJG, MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.M ) THEN
         INFO = -2
      ELSE IF( K.LT.0 .OR. K.GT.M ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -5
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CUNGR2', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.LE.0 )
     $   RETURN
*
      IF( K.LT.M ) THEN
*
*        Initialise rows 1:m-k to rows of the unit matrix
*
         DO 20 J = 1, N
            DO 10 L = 1, M - K
               A( L, J ) = ZERO
   10       CONTINUE
            IF( J.GT.N-M .AND. J.LE.N-K )
     $         A( M-N+J, J ) = ONE
   20    CONTINUE
      END IF
*
      DO 40 I = 1, K
         II = M - K + I
*
*        Apply H(i)' to A(1:m-k+i,1:n-k+i) from the right
*
         CALL CLACGV( N-M+II-1, A( II, 1 ), LDA )
         A( II, N-M+II ) = ONE
         CALL CLARF( 'Right', II-1, N-M+II, A( II, 1 ), LDA,
     $               CONJG( TAU( I ) ), A, LDA, WORK )
         CALL CSCAL( N-M+II-1, -TAU( I ), A( II, 1 ), LDA )
         CALL CLACGV( N-M+II-1, A( II, 1 ), LDA )
         A( II, N-M+II ) = ONE - CONJG( TAU( I ) )
*
*        Set A(m-k+i,n-k+i+1:n) to zero
*
         DO 30 L = N - M + II + 1, N
            A( II, L ) = ZERO
   30    CONTINUE
   40 CONTINUE
      RETURN
*
*     End of CUNGR2
*
      END