summaryrefslogtreecommitdiff
path: root/SRC/csyconvf.f
blob: 707e7138f1e916ceafefbb6947aa09f61c935f24 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
*> \brief \b CSYCONVF
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CSYCONVF + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csyconvf.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csyconvf.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csyconvf.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE CSYCONVF( UPLO, WAY, N, A, LDA, IPIV, E, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          UPLO, WAY
*       INTEGER            INFO, LDA, N
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIV( * )
*       COMPLEX            A( LDA, * ), E( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*> If parameter WAY = 'C':
*> CSYCONVF converts the factorization output format used in
*> CSYTRF provided on entry in parameter A into the factorization
*> output format used in CSYTRF_RK (or CSYTRF_BK) that is stored
*> on exit in parameters A and E. It also coverts in place details of
*> the intechanges stored in IPIV from the format used in CSYTRF into
*> the format used in CSYTRF_RK (or CSYTRF_BK).
*>
*> If parameter WAY = 'R':
*> CSYCONVF performs the conversion in reverse direction, i.e.
*> converts the factorization output format used in CSYTRF_RK
*> (or CSYTRF_BK) provided on entry in parameters A and E into
*> the factorization output format used in CSYTRF that is stored
*> on exit in parameter A. It also coverts in place details of
*> the intechanges stored in IPIV from the format used in CSYTRF_RK
*> (or CSYTRF_BK) into the format used in CSYTRF.
*>
*> CSYCONVF can also convert in Hermitian matrix case, i.e. between
*> formats used in CHETRF and CHETRF_RK (or CHETRF_BK).
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the details of the factorization are
*>          stored as an upper or lower triangular matrix A.
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] WAY
*> \verbatim
*>          WAY is CHARACTER*1
*>          = 'C': Convert
*>          = 'R': Revert
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX array, dimension (LDA,N)
*>
*>          1) If WAY ='C':
*>
*>          On entry, contains factorization details in format used in
*>          CSYTRF:
*>            a) all elements of the symmetric block diagonal
*>               matrix D on the diagonal of A and on superdiagonal
*>               (or subdiagonal) of A, and
*>            b) If UPLO = 'U': multipliers used to obtain factor U
*>               in the superdiagonal part of A.
*>               If UPLO = 'L': multipliers used to obtain factor L
*>               in the superdiagonal part of A.
*>
*>          On exit, contains factorization details in format used in
*>          CSYTRF_RK or CSYTRF_BK:
*>            a) ONLY diagonal elements of the symmetric block diagonal
*>               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
*>               (superdiagonal (or subdiagonal) elements of D
*>                are stored on exit in array E), and
*>            b) If UPLO = 'U': factor U in the superdiagonal part of A.
*>               If UPLO = 'L': factor L in the subdiagonal part of A.
*>
*>          2) If WAY = 'R':
*>
*>          On entry, contains factorization details in format used in
*>          CSYTRF_RK or CSYTRF_BK:
*>            a) ONLY diagonal elements of the symmetric block diagonal
*>               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
*>               (superdiagonal (or subdiagonal) elements of D
*>                are stored on exit in array E), and
*>            b) If UPLO = 'U': factor U in the superdiagonal part of A.
*>               If UPLO = 'L': factor L in the subdiagonal part of A.
*>
*>          On exit, contains factorization details in format used in
*>          CSYTRF:
*>            a) all elements of the symmetric block diagonal
*>               matrix D on the diagonal of A and on superdiagonal
*>               (or subdiagonal) of A, and
*>            b) If UPLO = 'U': multipliers used to obtain factor U
*>               in the superdiagonal part of A.
*>               If UPLO = 'L': multipliers used to obtain factor L
*>               in the superdiagonal part of A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] E
*> \verbatim
*>          E is COMPLEX array, dimension (N)
*>
*>          1) If WAY ='C':
*>
*>          On entry, just a workspace.
*>
*>          On exit, contains the superdiagonal (or subdiagonal)
*>          elements of the symmetric block diagonal matrix D
*>          with 1-by-1 or 2-by-2 diagonal blocks, where
*>          If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
*>          If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
*>
*>          2) If WAY = 'R':
*>
*>          On entry, contains the superdiagonal (or subdiagonal)
*>          elements of the symmetric block diagonal matrix D
*>          with 1-by-1 or 2-by-2 diagonal blocks, where
*>          If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
*>          If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
*>
*>          On exit, is not changed
*> \endverbatim
*.
*> \param[in,out] IPIV
*> \verbatim
*>          IPIV is INTEGER array, dimension (N)
*>
*>          1) If WAY ='C':
*>          On entry, details of the interchanges and the block
*>          structure of D in the format used in CSYTRF.
*>          On exit, details of the interchanges and the block
*>          structure of D in the format used in CSYTRF_RK
*>          ( or CSYTRF_BK).
*>
*>          1) If WAY ='R':
*>          On entry, details of the interchanges and the block
*>          structure of D in the format used in CSYTRF_RK
*>          ( or CSYTRF_BK).
*>          On exit, details of the interchanges and the block
*>          structure of D in the format used in CSYTRF.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date June 2017
*
*> \ingroup complexSYcomputational
*
*> \par Contributors:
*  ==================
*>
*> \verbatim
*>
*>  June 2017,  Igor Kozachenko,
*>                  Computer Science Division,
*>                  University of California, Berkeley
*>
*> \endverbatim
*  =====================================================================
      SUBROUTINE CSYCONVF( UPLO, WAY, N, A, LDA, E, IPIV, INFO )
*
*  -- LAPACK computational routine (version 3.7.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     June 2017
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO, WAY
      INTEGER            INFO, LDA, N
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX            A( LDA, * ), E( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            ZERO
      PARAMETER          ( ZERO = ( 0.0E+0, 0.0E+0 ) )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*
*     .. External Subroutines ..
      EXTERNAL           CSWAP, XERBLA
*     .. Local Scalars ..
      LOGICAL            UPPER, CONVERT
      INTEGER            I, IP
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      CONVERT = LSAME( WAY, 'C' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.CONVERT .AND. .NOT.LSAME( WAY, 'R' ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5

      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CSYCONVF', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      IF( UPPER ) THEN
*
*        Begin A is UPPER
*
         IF ( CONVERT ) THEN
*
*           Convert A (A is upper)
*
*
*           Convert VALUE
*
*           Assign superdiagonal entries of D to array E and zero out
*           corresponding entries in input storage A
*
            I = N
            E( 1 ) = ZERO
            DO WHILE ( I.GT.1 )
               IF( IPIV( I ).LT.0 ) THEN
                  E( I ) = A( I-1, I )
                  E( I-1 ) = ZERO
                  A( I-1, I ) = ZERO
                  I = I - 1
               ELSE
                  E( I ) = ZERO
               END IF
               I = I - 1
            END DO
*
*           Convert PERMUTATIONS and IPIV
*
*           Apply permutaions to submatrices of upper part of A
*           in factorization order where i decreases from N to 1
*
            I = N
            DO WHILE ( I.GE.1 )
               IF( IPIV( I ).GT.0 ) THEN
*
*                 1-by-1 pivot interchange
*
*                 Swap rows i and IPIV(i) in A(1:i,N-i:N)
*
                  IP = IPIV( I )
                  IF( I.LT.N ) THEN
                     IF( IP.NE.I ) THEN
                        CALL CSWAP( N-I, A( I, I+1 ), LDA,
     $                              A( IP, I+1 ), LDA )
                     END IF
                  END IF
*
               ELSE
*
*                 2-by-2 pivot interchange
*
*                 Swap rows i-1 and IPIV(i) in A(1:i,N-i:N)
*
                  IP = -IPIV( I )
                  IF( I.LT.N ) THEN
                     IF( IP.NE.(I-1) ) THEN
                        CALL CSWAP( N-I, A( I-1, I+1 ), LDA,
     $                              A( IP, I+1 ), LDA )
                     END IF
                  END IF
*
*                 Convert IPIV
*                 There is no interchnge of rows i and and IPIV(i),
*                 so this should be reflected in IPIV format for
*                 *SYTRF_RK ( or *SYTRF_BK)
*
                  IPIV( I ) = I
*
                  I = I - 1
*
               END IF
               I = I - 1
            END DO
*
         ELSE
*
*           Revert A (A is upper)
*
*
*           Revert PERMUTATIONS and IPIV
*
*           Apply permutaions to submatrices of upper part of A
*           in reverse factorization order where i increases from 1 to N
*
            I = 1
            DO WHILE ( I.LE.N )
               IF( IPIV( I ).GT.0 ) THEN
*
*                 1-by-1 pivot interchange
*
*                 Swap rows i and IPIV(i) in A(1:i,N-i:N)
*
                  IP = IPIV( I )
                  IF( I.LT.N ) THEN
                     IF( IP.NE.I ) THEN
                        CALL CSWAP( N-I, A( IP, I+1 ), LDA,
     $                              A( I, I+1 ), LDA )
                     END IF
                  END IF
*
               ELSE
*
*                 2-by-2 pivot interchange
*
*                 Swap rows i-1 and IPIV(i) in A(1:i,N-i:N)
*
                  I = I + 1
                  IP = -IPIV( I )
                  IF( I.LT.N ) THEN
                     IF( IP.NE.(I-1) ) THEN
                        CALL CSWAP( N-I, A( IP, I+1 ), LDA,
     $                              A( I-1, I+1 ), LDA )
                     END IF
                  END IF
*
*                 Convert IPIV
*                 There is one interchange of rows i-1 and IPIV(i-1),
*                 so this should be recorded in two consecutive entries
*                 in IPIV format for *SYTRF
*
                  IPIV( I ) = IPIV( I-1 )
*
               END IF
               I = I + 1
            END DO
*
*           Revert VALUE
*           Assign superdiagonal entries of D from array E to
*           superdiagonal entries of A.
*
            I = N
            DO WHILE ( I.GT.1 )
               IF( IPIV( I ).LT.0 ) THEN
                  A( I-1, I ) = E( I )
                  I = I - 1
               END IF
               I = I - 1
            END DO
*
*        End A is UPPER
*
         END IF
*
      ELSE
*
*        Begin A is LOWER
*
         IF ( CONVERT ) THEN
*
*           Convert A (A is lower)
*
*
*           Convert VALUE
*           Assign subdiagonal entries of D to array E and zero out
*           corresponding entries in input storage A
*
            I = 1
            E( N ) = ZERO
            DO WHILE ( I.LE.N )
               IF( I.LT.N .AND. IPIV(I).LT.0 ) THEN
                  E( I ) = A( I+1, I )
                  E( I+1 ) = ZERO
                  A( I+1, I ) = ZERO
                  I = I + 1
               ELSE
                  E( I ) = ZERO
               END IF
               I = I + 1
            END DO
*
*           Convert PERMUTATIONS and IPIV
*
*           Apply permutaions to submatrices of lower part of A
*           in factorization order where k increases from 1 to N
*
            I = 1
            DO WHILE ( I.LE.N )
               IF( IPIV( I ).GT.0 ) THEN
*
*                 1-by-1 pivot interchange
*
*                 Swap rows i and IPIV(i) in A(i:N,1:i-1)
*
                  IP = IPIV( I )
                  IF ( I.GT.1 ) THEN
                     IF( IP.NE.I ) THEN
                        CALL CSWAP( I-1, A( I, 1 ), LDA,
     $                              A( IP, 1 ), LDA )
                     END IF
                  END IF
*
               ELSE
*
*                 2-by-2 pivot interchange
*
*                 Swap rows i+1 and IPIV(i) in A(i:N,1:i-1)
*
                  IP = -IPIV( I )
                  IF ( I.GT.1 ) THEN
                     IF( IP.NE.(I+1) ) THEN
                        CALL CSWAP( I-1, A( I+1, 1 ), LDA,
     $                              A( IP, 1 ), LDA )
                     END IF
                  END IF
*
*                 Convert IPIV
*                 There is no interchnge of rows i and and IPIV(i),
*                 so this should be reflected in IPIV format for
*                 *SYTRF_RK ( or *SYTRF_BK)
*
                  IPIV( I ) = I
*
                  I = I + 1
*
               END IF
               I = I + 1
            END DO
*
         ELSE
*
*           Revert A (A is lower)
*
*
*           Revert PERMUTATIONS and IPIV
*
*           Apply permutaions to submatrices of lower part of A
*           in reverse factorization order where i decreases from N to 1
*
            I = N
            DO WHILE ( I.GE.1 )
               IF( IPIV( I ).GT.0 ) THEN
*
*                 1-by-1 pivot interchange
*
*                 Swap rows i and IPIV(i) in A(i:N,1:i-1)
*
                  IP = IPIV( I )
                  IF ( I.GT.1 ) THEN
                     IF( IP.NE.I ) THEN
                        CALL CSWAP( I-1, A( IP, 1 ), LDA,
     $                              A( I, 1 ), LDA )
                     END IF
                  END IF
*
               ELSE
*
*                 2-by-2 pivot interchange
*
*                 Swap rows i+1 and IPIV(i) in A(i:N,1:i-1)
*
                  I = I - 1
                  IP = -IPIV( I )
                  IF ( I.GT.1 ) THEN
                     IF( IP.NE.(I+1) ) THEN
                        CALL CSWAP( I-1, A( IP, 1 ), LDA,
     $                              A( I+1, 1 ), LDA )
                     END IF
                  END IF
*
*                 Convert IPIV
*                 There is one interchange of rows i+1 and IPIV(i+1),
*                 so this should be recorded in consecutive entries
*                 in IPIV format for *SYTRF
*
                  IPIV( I ) = IPIV( I+1 )
*
               END IF
               I = I - 1
            END DO
*
*           Revert VALUE
*           Assign subdiagonal entries of D from array E to
*           subgiagonal entries of A.
*
            I = 1
            DO WHILE ( I.LE.N-1 )
               IF( IPIV( I ).LT.0 ) THEN
                  A( I + 1, I ) = E( I )
                  I = I + 1
               END IF
               I = I + 1
            END DO
*
         END IF
*
*        End A is LOWER
*
      END IF

      RETURN
*
*     End of CSYCONVF
*
      END