summaryrefslogtreecommitdiff
path: root/SRC/cptts2.f
blob: 3e81af3f43e34f1d395e4e545b151e17212ed802 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
      SUBROUTINE CPTTS2( IUPLO, N, NRHS, D, E, B, LDB )
*
*  -- LAPACK routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
*
*     .. Scalar Arguments ..
      INTEGER            IUPLO, LDB, N, NRHS
*     ..
*     .. Array Arguments ..
      REAL               D( * )
      COMPLEX            B( LDB, * ), E( * )
*     ..
*
*  Purpose
*  =======
*
*  CPTTS2 solves a tridiagonal system of the form
*     A * X = B
*  using the factorization A = U**H*D*U or A = L*D*L**H computed by CPTTRF.
*  D is a diagonal matrix specified in the vector D, U (or L) is a unit
*  bidiagonal matrix whose superdiagonal (subdiagonal) is specified in
*  the vector E, and X and B are N by NRHS matrices.
*
*  Arguments
*  =========
*
*  IUPLO   (input) INTEGER
*          Specifies the form of the factorization and whether the
*          vector E is the superdiagonal of the upper bidiagonal factor
*          U or the subdiagonal of the lower bidiagonal factor L.
*          = 1:  A = U**H *D*U, E is the superdiagonal of U
*          = 0:  A = L*D*L**H, E is the subdiagonal of L
*
*  N       (input) INTEGER
*          The order of the tridiagonal matrix A.  N >= 0.
*
*  NRHS    (input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the matrix B.  NRHS >= 0.
*
*  D       (input) REAL array, dimension (N)
*          The n diagonal elements of the diagonal matrix D from the
*          factorization A = U**H *D*U or A = L*D*L**H.
*
*  E       (input) COMPLEX array, dimension (N-1)
*          If IUPLO = 1, the (n-1) superdiagonal elements of the unit
*          bidiagonal factor U from the factorization A = U**H*D*U.
*          If IUPLO = 0, the (n-1) subdiagonal elements of the unit
*          bidiagonal factor L from the factorization A = L*D*L**H.
*
*  B       (input/output) REAL array, dimension (LDB,NRHS)
*          On entry, the right hand side vectors B for the system of
*          linear equations.
*          On exit, the solution vectors, X.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  =====================================================================
*
*     .. Local Scalars ..
      INTEGER            I, J
*     ..
*     .. External Subroutines ..
      EXTERNAL           CSSCAL
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CONJG
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( N.LE.1 ) THEN
         IF( N.EQ.1 )
     $      CALL CSSCAL( NRHS, 1. / D( 1 ), B, LDB )
         RETURN
      END IF
*
      IF( IUPLO.EQ.1 ) THEN
*
*        Solve A * X = B using the factorization A = U**H *D*U,
*        overwriting each right hand side vector with its solution.
*
         IF( NRHS.LE.2 ) THEN
            J = 1
    5       CONTINUE
*
*           Solve U**H * x = b.
*
            DO 10 I = 2, N
               B( I, J ) = B( I, J ) - B( I-1, J )*CONJG( E( I-1 ) )
   10       CONTINUE
*
*           Solve D * U * x = b.
*
            DO 20 I = 1, N
               B( I, J ) = B( I, J ) / D( I )
   20       CONTINUE
            DO 30 I = N - 1, 1, -1
               B( I, J ) = B( I, J ) - B( I+1, J )*E( I )
   30       CONTINUE
            IF( J.LT.NRHS ) THEN
               J = J + 1
               GO TO 5
            END IF
         ELSE
            DO 60 J = 1, NRHS
*
*              Solve U**H * x = b.
*
               DO 40 I = 2, N
                  B( I, J ) = B( I, J ) - B( I-1, J )*CONJG( E( I-1 ) )
   40          CONTINUE
*
*              Solve D * U * x = b.
*
               B( N, J ) = B( N, J ) / D( N )
               DO 50 I = N - 1, 1, -1
                  B( I, J ) = B( I, J ) / D( I ) - B( I+1, J )*E( I )
   50          CONTINUE
   60       CONTINUE
         END IF
      ELSE
*
*        Solve A * X = B using the factorization A = L*D*L**H,
*        overwriting each right hand side vector with its solution.
*
         IF( NRHS.LE.2 ) THEN
            J = 1
   65       CONTINUE
*
*           Solve L * x = b.
*
            DO 70 I = 2, N
               B( I, J ) = B( I, J ) - B( I-1, J )*E( I-1 )
   70       CONTINUE
*
*           Solve D * L**H * x = b.
*
            DO 80 I = 1, N
               B( I, J ) = B( I, J ) / D( I )
   80       CONTINUE
            DO 90 I = N - 1, 1, -1
               B( I, J ) = B( I, J ) - B( I+1, J )*CONJG( E( I ) )
   90       CONTINUE
            IF( J.LT.NRHS ) THEN
               J = J + 1
               GO TO 65
            END IF
         ELSE
            DO 120 J = 1, NRHS
*
*              Solve L * x = b.
*
               DO 100 I = 2, N
                  B( I, J ) = B( I, J ) - B( I-1, J )*E( I-1 )
  100          CONTINUE
*
*              Solve D * L**H * x = b.
*
               B( N, J ) = B( N, J ) / D( N )
               DO 110 I = N - 1, 1, -1
                  B( I, J ) = B( I, J ) / D( I ) -
     $                        B( I+1, J )*CONJG( E( I ) )
  110          CONTINUE
  120       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of CPTTS2
*
      END