summaryrefslogtreecommitdiff
path: root/SRC/cptcon.f
blob: 5440221127c1544330a1032649e096af59f26a88 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
      SUBROUTINE CPTCON( N, D, E, ANORM, RCOND, RWORK, INFO )
*
*  -- LAPACK routine (version 3.2) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            INFO, N
      REAL               ANORM, RCOND
*     ..
*     .. Array Arguments ..
      REAL               D( * ), RWORK( * )
      COMPLEX            E( * )
*     ..
*
*  Purpose
*  =======
*
*  CPTCON computes the reciprocal of the condition number (in the
*  1-norm) of a complex Hermitian positive definite tridiagonal matrix
*  using the factorization A = L*D*L**H or A = U**H*D*U computed by
*  CPTTRF.
*
*  Norm(inv(A)) is computed by a direct method, and the reciprocal of
*  the condition number is computed as
*                   RCOND = 1 / (ANORM * norm(inv(A))).
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  D       (input) REAL array, dimension (N)
*          The n diagonal elements of the diagonal matrix D from the
*          factorization of A, as computed by CPTTRF.
*
*  E       (input) COMPLEX array, dimension (N-1)
*          The (n-1) off-diagonal elements of the unit bidiagonal factor
*          U or L from the factorization of A, as computed by CPTTRF.
*
*  ANORM   (input) REAL
*          The 1-norm of the original matrix A.
*
*  RCOND   (output) REAL
*          The reciprocal of the condition number of the matrix A,
*          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is the
*          1-norm of inv(A) computed in this routine.
*
*  RWORK   (workspace) REAL array, dimension (N)
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  Further Details
*  ===============
*
*  The method used is described in Nicholas J. Higham, "Efficient
*  Algorithms for Computing the Condition Number of a Tridiagonal
*  Matrix", SIAM J. Sci. Stat. Comput., Vol. 7, No. 1, January 1986.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, IX
      REAL               AINVNM
*     ..
*     .. External Functions ..
      INTEGER            ISAMAX
      EXTERNAL           ISAMAX
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments.
*
      INFO = 0
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( ANORM.LT.ZERO ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CPTCON', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      RCOND = ZERO
      IF( N.EQ.0 ) THEN
         RCOND = ONE
         RETURN
      ELSE IF( ANORM.EQ.ZERO ) THEN
         RETURN
      END IF
*
*     Check that D(1:N) is positive.
*
      DO 10 I = 1, N
         IF( D( I ).LE.ZERO )
     $      RETURN
   10 CONTINUE
*
*     Solve M(A) * x = e, where M(A) = (m(i,j)) is given by
*
*        m(i,j) =  abs(A(i,j)), i = j,
*        m(i,j) = -abs(A(i,j)), i .ne. j,
*
*     and e = [ 1, 1, ..., 1 ]'.  Note M(A) = M(L)*D*M(L)'.
*
*     Solve M(L) * x = e.
*
      RWORK( 1 ) = ONE
      DO 20 I = 2, N
         RWORK( I ) = ONE + RWORK( I-1 )*ABS( E( I-1 ) )
   20 CONTINUE
*
*     Solve D * M(L)' * x = b.
*
      RWORK( N ) = RWORK( N ) / D( N )
      DO 30 I = N - 1, 1, -1
         RWORK( I ) = RWORK( I ) / D( I ) + RWORK( I+1 )*ABS( E( I ) )
   30 CONTINUE
*
*     Compute AINVNM = max(x(i)), 1<=i<=n.
*
      IX = ISAMAX( N, RWORK, 1 )
      AINVNM = ABS( RWORK( IX ) )
*
*     Compute the reciprocal condition number.
*
      IF( AINVNM.NE.ZERO )
     $   RCOND = ( ONE / AINVNM ) / ANORM
*
      RETURN
*
*     End of CPTCON
*
      END