1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
|
SUBROUTINE CPTCON( N, D, E, ANORM, RCOND, RWORK, INFO )
*
* -- LAPACK routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* .. Scalar Arguments ..
INTEGER INFO, N
REAL ANORM, RCOND
* ..
* .. Array Arguments ..
REAL D( * ), RWORK( * )
COMPLEX E( * )
* ..
*
* Purpose
* =======
*
* CPTCON computes the reciprocal of the condition number (in the
* 1-norm) of a complex Hermitian positive definite tridiagonal matrix
* using the factorization A = L*D*L**H or A = U**H*D*U computed by
* CPTTRF.
*
* Norm(inv(A)) is computed by a direct method, and the reciprocal of
* the condition number is computed as
* RCOND = 1 / (ANORM * norm(inv(A))).
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* D (input) REAL array, dimension (N)
* The n diagonal elements of the diagonal matrix D from the
* factorization of A, as computed by CPTTRF.
*
* E (input) COMPLEX array, dimension (N-1)
* The (n-1) off-diagonal elements of the unit bidiagonal factor
* U or L from the factorization of A, as computed by CPTTRF.
*
* ANORM (input) REAL
* The 1-norm of the original matrix A.
*
* RCOND (output) REAL
* The reciprocal of the condition number of the matrix A,
* computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is the
* 1-norm of inv(A) computed in this routine.
*
* RWORK (workspace) REAL array, dimension (N)
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* Further Details
* ===============
*
* The method used is described in Nicholas J. Higham, "Efficient
* Algorithms for Computing the Condition Number of a Tridiagonal
* Matrix", SIAM J. Sci. Stat. Comput., Vol. 7, No. 1, January 1986.
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, IX
REAL AINVNM
* ..
* .. External Functions ..
INTEGER ISAMAX
EXTERNAL ISAMAX
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS
* ..
* .. Executable Statements ..
*
* Test the input arguments.
*
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( ANORM.LT.ZERO ) THEN
INFO = -4
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CPTCON', -INFO )
RETURN
END IF
*
* Quick return if possible
*
RCOND = ZERO
IF( N.EQ.0 ) THEN
RCOND = ONE
RETURN
ELSE IF( ANORM.EQ.ZERO ) THEN
RETURN
END IF
*
* Check that D(1:N) is positive.
*
DO 10 I = 1, N
IF( D( I ).LE.ZERO )
$ RETURN
10 CONTINUE
*
* Solve M(A) * x = e, where M(A) = (m(i,j)) is given by
*
* m(i,j) = abs(A(i,j)), i = j,
* m(i,j) = -abs(A(i,j)), i .ne. j,
*
* and e = [ 1, 1, ..., 1 ]'. Note M(A) = M(L)*D*M(L)'.
*
* Solve M(L) * x = e.
*
RWORK( 1 ) = ONE
DO 20 I = 2, N
RWORK( I ) = ONE + RWORK( I-1 )*ABS( E( I-1 ) )
20 CONTINUE
*
* Solve D * M(L)' * x = b.
*
RWORK( N ) = RWORK( N ) / D( N )
DO 30 I = N - 1, 1, -1
RWORK( I ) = RWORK( I ) / D( I ) + RWORK( I+1 )*ABS( E( I ) )
30 CONTINUE
*
* Compute AINVNM = max(x(i)), 1<=i<=n.
*
IX = ISAMAX( N, RWORK, 1 )
AINVNM = ABS( RWORK( IX ) )
*
* Compute the reciprocal condition number.
*
IF( AINVNM.NE.ZERO )
$ RCOND = ( ONE / AINVNM ) / ANORM
*
RETURN
*
* End of CPTCON
*
END
|