1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
|
SUBROUTINE CPPTRF( UPLO, N, AP, INFO )
*
* -- LAPACK routine (version 3.2) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, N
* ..
* .. Array Arguments ..
COMPLEX AP( * )
* ..
*
* Purpose
* =======
*
* CPPTRF computes the Cholesky factorization of a complex Hermitian
* positive definite matrix A stored in packed format.
*
* The factorization has the form
* A = U**H * U, if UPLO = 'U', or
* A = L * L**H, if UPLO = 'L',
* where U is an upper triangular matrix and L is lower triangular.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* = 'U': Upper triangle of A is stored;
* = 'L': Lower triangle of A is stored.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* AP (input/output) COMPLEX array, dimension (N*(N+1)/2)
* On entry, the upper or lower triangle of the Hermitian matrix
* A, packed columnwise in a linear array. The j-th column of A
* is stored in the array AP as follows:
* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
* See below for further details.
*
* On exit, if INFO = 0, the triangular factor U or L from the
* Cholesky factorization A = U**H*U or A = L*L**H, in the same
* storage format as A.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = i, the leading minor of order i is not
* positive definite, and the factorization could not be
* completed.
*
* Further Details
* ===============
*
* The packed storage scheme is illustrated by the following example
* when N = 4, UPLO = 'U':
*
* Two-dimensional storage of the Hermitian matrix A:
*
* a11 a12 a13 a14
* a22 a23 a24
* a33 a34 (aij = conjg(aji))
* a44
*
* Packed storage of the upper triangle of A:
*
* AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL UPPER
INTEGER J, JC, JJ
REAL AJJ
* ..
* .. External Functions ..
LOGICAL LSAME
COMPLEX CDOTC
EXTERNAL LSAME, CDOTC
* ..
* .. External Subroutines ..
EXTERNAL CHPR, CSSCAL, CTPSV, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC REAL, SQRT
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CPPTRF', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
IF( UPPER ) THEN
*
* Compute the Cholesky factorization A = U'*U.
*
JJ = 0
DO 10 J = 1, N
JC = JJ + 1
JJ = JJ + J
*
* Compute elements 1:J-1 of column J.
*
IF( J.GT.1 )
$ CALL CTPSV( 'Upper', 'Conjugate transpose', 'Non-unit',
$ J-1, AP, AP( JC ), 1 )
*
* Compute U(J,J) and test for non-positive-definiteness.
*
AJJ = REAL( AP( JJ ) ) - CDOTC( J-1, AP( JC ), 1, AP( JC ),
$ 1 )
IF( AJJ.LE.ZERO ) THEN
AP( JJ ) = AJJ
GO TO 30
END IF
AP( JJ ) = SQRT( AJJ )
10 CONTINUE
ELSE
*
* Compute the Cholesky factorization A = L*L'.
*
JJ = 1
DO 20 J = 1, N
*
* Compute L(J,J) and test for non-positive-definiteness.
*
AJJ = REAL( AP( JJ ) )
IF( AJJ.LE.ZERO ) THEN
AP( JJ ) = AJJ
GO TO 30
END IF
AJJ = SQRT( AJJ )
AP( JJ ) = AJJ
*
* Compute elements J+1:N of column J and update the trailing
* submatrix.
*
IF( J.LT.N ) THEN
CALL CSSCAL( N-J, ONE / AJJ, AP( JJ+1 ), 1 )
CALL CHPR( 'Lower', N-J, -ONE, AP( JJ+1 ), 1,
$ AP( JJ+N-J+1 ) )
JJ = JJ + N - J + 1
END IF
20 CONTINUE
END IF
GO TO 40
*
30 CONTINUE
INFO = J
*
40 CONTINUE
RETURN
*
* End of CPPTRF
*
END
|