1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
|
*> \brief \b CLAR1V
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> Download CLAR1V + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clar1v.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clar1v.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clar1v.f">
*> [TXT]</a>
*
* Definition
* ==========
*
* SUBROUTINE CLAR1V( N, B1, BN, LAMBDA, D, L, LD, LLD,
* PIVMIN, GAPTOL, Z, WANTNC, NEGCNT, ZTZ, MINGMA,
* R, ISUPPZ, NRMINV, RESID, RQCORR, WORK )
*
* .. Scalar Arguments ..
* LOGICAL WANTNC
* INTEGER B1, BN, N, NEGCNT, R
* REAL GAPTOL, LAMBDA, MINGMA, NRMINV, PIVMIN, RESID,
* $ RQCORR, ZTZ
* ..
* .. Array Arguments ..
* INTEGER ISUPPZ( * )
* REAL D( * ), L( * ), LD( * ), LLD( * ),
* $ WORK( * )
* COMPLEX Z( * )
* ..
*
* Purpose
* =======
*
*>\details \b Purpose:
*>\verbatim
*>
*> CLAR1V computes the (scaled) r-th column of the inverse of
*> the sumbmatrix in rows B1 through BN of the tridiagonal matrix
*> L D L**T - sigma I. When sigma is close to an eigenvalue, the
*> computed vector is an accurate eigenvector. Usually, r corresponds
*> to the index where the eigenvector is largest in magnitude.
*> The following steps accomplish this computation :
*> (a) Stationary qd transform, L D L**T - sigma I = L(+) D(+) L(+)**T,
*> (b) Progressive qd transform, L D L**T - sigma I = U(-) D(-) U(-)**T,
*> (c) Computation of the diagonal elements of the inverse of
*> L D L**T - sigma I by combining the above transforms, and choosing
*> r as the index where the diagonal of the inverse is (one of the)
*> largest in magnitude.
*> (d) Computation of the (scaled) r-th column of the inverse using the
*> twisted factorization obtained by combining the top part of the
*> the stationary and the bottom part of the progressive transform.
*>
*>\endverbatim
*
* Arguments
* =========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix L D L**T.
*> \endverbatim
*>
*> \param[in] B1
*> \verbatim
*> B1 is INTEGER
*> First index of the submatrix of L D L**T.
*> \endverbatim
*>
*> \param[in] BN
*> \verbatim
*> BN is INTEGER
*> Last index of the submatrix of L D L**T.
*> \endverbatim
*>
*> \param[in] LAMBDA
*> \verbatim
*> LAMBDA is REAL
*> The shift. In order to compute an accurate eigenvector,
*> LAMBDA should be a good approximation to an eigenvalue
*> of L D L**T.
*> \endverbatim
*>
*> \param[in] L
*> \verbatim
*> L is REAL array, dimension (N-1)
*> The (n-1) subdiagonal elements of the unit bidiagonal matrix
*> L, in elements 1 to N-1.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is REAL array, dimension (N)
*> The n diagonal elements of the diagonal matrix D.
*> \endverbatim
*>
*> \param[in] LD
*> \verbatim
*> LD is REAL array, dimension (N-1)
*> The n-1 elements L(i)*D(i).
*> \endverbatim
*>
*> \param[in] LLD
*> \verbatim
*> LLD is REAL array, dimension (N-1)
*> The n-1 elements L(i)*L(i)*D(i).
*> \endverbatim
*>
*> \param[in] PIVMIN
*> \verbatim
*> PIVMIN is REAL
*> The minimum pivot in the Sturm sequence.
*> \endverbatim
*>
*> \param[in] GAPTOL
*> \verbatim
*> GAPTOL is REAL
*> Tolerance that indicates when eigenvector entries are negligible
*> w.r.t. their contribution to the residual.
*> \endverbatim
*>
*> \param[in,out] Z
*> \verbatim
*> Z is COMPLEX array, dimension (N)
*> On input, all entries of Z must be set to 0.
*> On output, Z contains the (scaled) r-th column of the
*> inverse. The scaling is such that Z(R) equals 1.
*> \endverbatim
*>
*> \param[in] WANTNC
*> \verbatim
*> WANTNC is LOGICAL
*> Specifies whether NEGCNT has to be computed.
*> \endverbatim
*>
*> \param[out] NEGCNT
*> \verbatim
*> NEGCNT is INTEGER
*> If WANTNC is .TRUE. then NEGCNT = the number of pivots < pivmin
*> in the matrix factorization L D L**T, and NEGCNT = -1 otherwise.
*> \endverbatim
*>
*> \param[out] ZTZ
*> \verbatim
*> ZTZ is REAL
*> The square of the 2-norm of Z.
*> \endverbatim
*>
*> \param[out] MINGMA
*> \verbatim
*> MINGMA is REAL
*> The reciprocal of the largest (in magnitude) diagonal
*> element of the inverse of L D L**T - sigma I.
*> \endverbatim
*>
*> \param[in,out] R
*> \verbatim
*> R is INTEGER
*> The twist index for the twisted factorization used to
*> compute Z.
*> On input, 0 <= R <= N. If R is input as 0, R is set to
*> the index where (L D L**T - sigma I)^{-1} is largest
*> in magnitude. If 1 <= R <= N, R is unchanged.
*> On output, R contains the twist index used to compute Z.
*> Ideally, R designates the position of the maximum entry in the
*> eigenvector.
*> \endverbatim
*>
*> \param[out] ISUPPZ
*> \verbatim
*> ISUPPZ is INTEGER array, dimension (2)
*> The support of the vector in Z, i.e., the vector Z is
*> nonzero only in elements ISUPPZ(1) through ISUPPZ( 2 ).
*> \endverbatim
*>
*> \param[out] NRMINV
*> \verbatim
*> NRMINV is REAL
*> NRMINV = 1/SQRT( ZTZ )
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*> RESID is REAL
*> The residual of the FP vector.
*> RESID = ABS( MINGMA )/SQRT( ZTZ )
*> \endverbatim
*>
*> \param[out] RQCORR
*> \verbatim
*> RQCORR is REAL
*> The Rayleigh Quotient correction to LAMBDA.
*> RQCORR = MINGMA*TMP
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (4*N)
*> \endverbatim
*>
*
* Authors
* =======
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complexOTHERauxiliary
*
*
* Further Details
* ===============
*>\details \b Further \b Details
*> \verbatim
*>
*> Based on contributions by
*> Beresford Parlett, University of California, Berkeley, USA
*> Jim Demmel, University of California, Berkeley, USA
*> Inderjit Dhillon, University of Texas, Austin, USA
*> Osni Marques, LBNL/NERSC, USA
*> Christof Voemel, University of California, Berkeley, USA
*>
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CLAR1V( N, B1, BN, LAMBDA, D, L, LD, LLD,
$ PIVMIN, GAPTOL, Z, WANTNC, NEGCNT, ZTZ, MINGMA,
$ R, ISUPPZ, NRMINV, RESID, RQCORR, WORK )
*
* -- LAPACK auxiliary routine (version 3.3.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
LOGICAL WANTNC
INTEGER B1, BN, N, NEGCNT, R
REAL GAPTOL, LAMBDA, MINGMA, NRMINV, PIVMIN, RESID,
$ RQCORR, ZTZ
* ..
* .. Array Arguments ..
INTEGER ISUPPZ( * )
REAL D( * ), L( * ), LD( * ), LLD( * ),
$ WORK( * )
COMPLEX Z( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
COMPLEX CONE
PARAMETER ( CONE = ( 1.0E0, 0.0E0 ) )
* ..
* .. Local Scalars ..
LOGICAL SAWNAN1, SAWNAN2
INTEGER I, INDLPL, INDP, INDS, INDUMN, NEG1, NEG2, R1,
$ R2
REAL DMINUS, DPLUS, EPS, S, TMP
* ..
* .. External Functions ..
LOGICAL SISNAN
REAL SLAMCH
EXTERNAL SISNAN, SLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, REAL
* ..
* .. Executable Statements ..
*
EPS = SLAMCH( 'Precision' )
IF( R.EQ.0 ) THEN
R1 = B1
R2 = BN
ELSE
R1 = R
R2 = R
END IF
* Storage for LPLUS
INDLPL = 0
* Storage for UMINUS
INDUMN = N
INDS = 2*N + 1
INDP = 3*N + 1
IF( B1.EQ.1 ) THEN
WORK( INDS ) = ZERO
ELSE
WORK( INDS+B1-1 ) = LLD( B1-1 )
END IF
*
* Compute the stationary transform (using the differential form)
* until the index R2.
*
SAWNAN1 = .FALSE.
NEG1 = 0
S = WORK( INDS+B1-1 ) - LAMBDA
DO 50 I = B1, R1 - 1
DPLUS = D( I ) + S
WORK( INDLPL+I ) = LD( I ) / DPLUS
IF(DPLUS.LT.ZERO) NEG1 = NEG1 + 1
WORK( INDS+I ) = S*WORK( INDLPL+I )*L( I )
S = WORK( INDS+I ) - LAMBDA
50 CONTINUE
SAWNAN1 = SISNAN( S )
IF( SAWNAN1 ) GOTO 60
DO 51 I = R1, R2 - 1
DPLUS = D( I ) + S
WORK( INDLPL+I ) = LD( I ) / DPLUS
WORK( INDS+I ) = S*WORK( INDLPL+I )*L( I )
S = WORK( INDS+I ) - LAMBDA
51 CONTINUE
SAWNAN1 = SISNAN( S )
*
60 CONTINUE
IF( SAWNAN1 ) THEN
* Runs a slower version of the above loop if a NaN is detected
NEG1 = 0
S = WORK( INDS+B1-1 ) - LAMBDA
DO 70 I = B1, R1 - 1
DPLUS = D( I ) + S
IF(ABS(DPLUS).LT.PIVMIN) DPLUS = -PIVMIN
WORK( INDLPL+I ) = LD( I ) / DPLUS
IF(DPLUS.LT.ZERO) NEG1 = NEG1 + 1
WORK( INDS+I ) = S*WORK( INDLPL+I )*L( I )
IF( WORK( INDLPL+I ).EQ.ZERO )
$ WORK( INDS+I ) = LLD( I )
S = WORK( INDS+I ) - LAMBDA
70 CONTINUE
DO 71 I = R1, R2 - 1
DPLUS = D( I ) + S
IF(ABS(DPLUS).LT.PIVMIN) DPLUS = -PIVMIN
WORK( INDLPL+I ) = LD( I ) / DPLUS
WORK( INDS+I ) = S*WORK( INDLPL+I )*L( I )
IF( WORK( INDLPL+I ).EQ.ZERO )
$ WORK( INDS+I ) = LLD( I )
S = WORK( INDS+I ) - LAMBDA
71 CONTINUE
END IF
*
* Compute the progressive transform (using the differential form)
* until the index R1
*
SAWNAN2 = .FALSE.
NEG2 = 0
WORK( INDP+BN-1 ) = D( BN ) - LAMBDA
DO 80 I = BN - 1, R1, -1
DMINUS = LLD( I ) + WORK( INDP+I )
TMP = D( I ) / DMINUS
IF(DMINUS.LT.ZERO) NEG2 = NEG2 + 1
WORK( INDUMN+I ) = L( I )*TMP
WORK( INDP+I-1 ) = WORK( INDP+I )*TMP - LAMBDA
80 CONTINUE
TMP = WORK( INDP+R1-1 )
SAWNAN2 = SISNAN( TMP )
IF( SAWNAN2 ) THEN
* Runs a slower version of the above loop if a NaN is detected
NEG2 = 0
DO 100 I = BN-1, R1, -1
DMINUS = LLD( I ) + WORK( INDP+I )
IF(ABS(DMINUS).LT.PIVMIN) DMINUS = -PIVMIN
TMP = D( I ) / DMINUS
IF(DMINUS.LT.ZERO) NEG2 = NEG2 + 1
WORK( INDUMN+I ) = L( I )*TMP
WORK( INDP+I-1 ) = WORK( INDP+I )*TMP - LAMBDA
IF( TMP.EQ.ZERO )
$ WORK( INDP+I-1 ) = D( I ) - LAMBDA
100 CONTINUE
END IF
*
* Find the index (from R1 to R2) of the largest (in magnitude)
* diagonal element of the inverse
*
MINGMA = WORK( INDS+R1-1 ) + WORK( INDP+R1-1 )
IF( MINGMA.LT.ZERO ) NEG1 = NEG1 + 1
IF( WANTNC ) THEN
NEGCNT = NEG1 + NEG2
ELSE
NEGCNT = -1
ENDIF
IF( ABS(MINGMA).EQ.ZERO )
$ MINGMA = EPS*WORK( INDS+R1-1 )
R = R1
DO 110 I = R1, R2 - 1
TMP = WORK( INDS+I ) + WORK( INDP+I )
IF( TMP.EQ.ZERO )
$ TMP = EPS*WORK( INDS+I )
IF( ABS( TMP ).LE.ABS( MINGMA ) ) THEN
MINGMA = TMP
R = I + 1
END IF
110 CONTINUE
*
* Compute the FP vector: solve N^T v = e_r
*
ISUPPZ( 1 ) = B1
ISUPPZ( 2 ) = BN
Z( R ) = CONE
ZTZ = ONE
*
* Compute the FP vector upwards from R
*
IF( .NOT.SAWNAN1 .AND. .NOT.SAWNAN2 ) THEN
DO 210 I = R-1, B1, -1
Z( I ) = -( WORK( INDLPL+I )*Z( I+1 ) )
IF( (ABS(Z(I))+ABS(Z(I+1)))* ABS(LD(I)).LT.GAPTOL )
$ THEN
Z( I ) = ZERO
ISUPPZ( 1 ) = I + 1
GOTO 220
ENDIF
ZTZ = ZTZ + REAL( Z( I )*Z( I ) )
210 CONTINUE
220 CONTINUE
ELSE
* Run slower loop if NaN occurred.
DO 230 I = R - 1, B1, -1
IF( Z( I+1 ).EQ.ZERO ) THEN
Z( I ) = -( LD( I+1 ) / LD( I ) )*Z( I+2 )
ELSE
Z( I ) = -( WORK( INDLPL+I )*Z( I+1 ) )
END IF
IF( (ABS(Z(I))+ABS(Z(I+1)))* ABS(LD(I)).LT.GAPTOL )
$ THEN
Z( I ) = ZERO
ISUPPZ( 1 ) = I + 1
GO TO 240
END IF
ZTZ = ZTZ + REAL( Z( I )*Z( I ) )
230 CONTINUE
240 CONTINUE
ENDIF
* Compute the FP vector downwards from R in blocks of size BLKSIZ
IF( .NOT.SAWNAN1 .AND. .NOT.SAWNAN2 ) THEN
DO 250 I = R, BN-1
Z( I+1 ) = -( WORK( INDUMN+I )*Z( I ) )
IF( (ABS(Z(I))+ABS(Z(I+1)))* ABS(LD(I)).LT.GAPTOL )
$ THEN
Z( I+1 ) = ZERO
ISUPPZ( 2 ) = I
GO TO 260
END IF
ZTZ = ZTZ + REAL( Z( I+1 )*Z( I+1 ) )
250 CONTINUE
260 CONTINUE
ELSE
* Run slower loop if NaN occurred.
DO 270 I = R, BN - 1
IF( Z( I ).EQ.ZERO ) THEN
Z( I+1 ) = -( LD( I-1 ) / LD( I ) )*Z( I-1 )
ELSE
Z( I+1 ) = -( WORK( INDUMN+I )*Z( I ) )
END IF
IF( (ABS(Z(I))+ABS(Z(I+1)))* ABS(LD(I)).LT.GAPTOL )
$ THEN
Z( I+1 ) = ZERO
ISUPPZ( 2 ) = I
GO TO 280
END IF
ZTZ = ZTZ + REAL( Z( I+1 )*Z( I+1 ) )
270 CONTINUE
280 CONTINUE
END IF
*
* Compute quantities for convergence test
*
TMP = ONE / ZTZ
NRMINV = SQRT( TMP )
RESID = ABS( MINGMA )*NRMINV
RQCORR = MINGMA*TMP
*
*
RETURN
*
* End of CLAR1V
*
END
|