summaryrefslogtreecommitdiff
path: root/SRC/claqp2.f
blob: 06b06e07e34f4875c1f2dca13cc2b0b38eb02c11 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
*> \brief \b CLAQP2 computes a QR factorization with column pivoting of the matrix block.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download CLAQP2 + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claqp2.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claqp2.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claqp2.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       SUBROUTINE CLAQP2( M, N, OFFSET, A, LDA, JPVT, TAU, VN1, VN2,
*                          WORK )
* 
*       .. Scalar Arguments ..
*       INTEGER            LDA, M, N, OFFSET
*       ..
*       .. Array Arguments ..
*       INTEGER            JPVT( * )
*       REAL               VN1( * ), VN2( * )
*       COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CLAQP2 computes a QR factorization with column pivoting of
*> the block A(OFFSET+1:M,1:N).
*> The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] OFFSET
*> \verbatim
*>          OFFSET is INTEGER
*>          The number of rows of the matrix A that must be pivoted
*>          but no factorized. OFFSET >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX array, dimension (LDA,N)
*>          On entry, the M-by-N matrix A.
*>          On exit, the upper triangle of block A(OFFSET+1:M,1:N) is 
*>          the triangular factor obtained; the elements in block
*>          A(OFFSET+1:M,1:N) below the diagonal, together with the
*>          array TAU, represent the orthogonal matrix Q as a product of
*>          elementary reflectors. Block A(1:OFFSET,1:N) has been
*>          accordingly pivoted, but no factorized.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[in,out] JPVT
*> \verbatim
*>          JPVT is INTEGER array, dimension (N)
*>          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
*>          to the front of A*P (a leading column); if JPVT(i) = 0,
*>          the i-th column of A is a free column.
*>          On exit, if JPVT(i) = k, then the i-th column of A*P
*>          was the k-th column of A.
*> \endverbatim
*>
*> \param[out] TAU
*> \verbatim
*>          TAU is COMPLEX array, dimension (min(M,N))
*>          The scalar factors of the elementary reflectors.
*> \endverbatim
*>
*> \param[in,out] VN1
*> \verbatim
*>          VN1 is REAL array, dimension (N)
*>          The vector with the partial column norms.
*> \endverbatim
*>
*> \param[in,out] VN2
*> \verbatim
*>          VN2 is REAL array, dimension (N)
*>          The vector with the exact column norms.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array, dimension (N)
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date September 2012
*
*> \ingroup complexOTHERauxiliary
*
*> \par Contributors:
*  ==================
*>
*>    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
*>    X. Sun, Computer Science Dept., Duke University, USA
*> \n
*>  Partial column norm updating strategy modified on April 2011
*>    Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
*>    University of Zagreb, Croatia.
*
*> \par References:
*  ================
*>
*> LAPACK Working Note 176
*
*> \htmlonly
*> <a href="http://www.netlib.org/lapack/lawnspdf/lawn176.pdf">[PDF]</a> 
*> \endhtmlonly 
*
*  =====================================================================
      SUBROUTINE CLAQP2( M, N, OFFSET, A, LDA, JPVT, TAU, VN1, VN2,
     $                   WORK )
*
*  -- LAPACK auxiliary routine (version 3.4.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     September 2012
*
*     .. Scalar Arguments ..
      INTEGER            LDA, M, N, OFFSET
*     ..
*     .. Array Arguments ..
      INTEGER            JPVT( * )
      REAL               VN1( * ), VN2( * )
      COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      COMPLEX            CONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0,
     $                   CONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, ITEMP, J, MN, OFFPI, PVT
      REAL               TEMP, TEMP2, TOL3Z
      COMPLEX            AII
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLARF, CLARFG, CSWAP
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, CONJG, MAX, MIN, SQRT
*     ..
*     .. External Functions ..
      INTEGER            ISAMAX
      REAL               SCNRM2, SLAMCH
      EXTERNAL           ISAMAX, SCNRM2, SLAMCH
*     ..
*     .. Executable Statements ..
*
      MN = MIN( M-OFFSET, N )
      TOL3Z = SQRT(SLAMCH('Epsilon'))
*
*     Compute factorization.
*
      DO 20 I = 1, MN
*
         OFFPI = OFFSET + I
*
*        Determine ith pivot column and swap if necessary.
*
         PVT = ( I-1 ) + ISAMAX( N-I+1, VN1( I ), 1 )
*
         IF( PVT.NE.I ) THEN
            CALL CSWAP( M, A( 1, PVT ), 1, A( 1, I ), 1 )
            ITEMP = JPVT( PVT )
            JPVT( PVT ) = JPVT( I )
            JPVT( I ) = ITEMP
            VN1( PVT ) = VN1( I )
            VN2( PVT ) = VN2( I )
         END IF
*
*        Generate elementary reflector H(i).
*
         IF( OFFPI.LT.M ) THEN
            CALL CLARFG( M-OFFPI+1, A( OFFPI, I ), A( OFFPI+1, I ), 1,
     $                   TAU( I ) )
         ELSE
            CALL CLARFG( 1, A( M, I ), A( M, I ), 1, TAU( I ) )
         END IF
*
         IF( I.LT.N ) THEN
*
*           Apply H(i)**H to A(offset+i:m,i+1:n) from the left.
*
            AII = A( OFFPI, I )
            A( OFFPI, I ) = CONE
            CALL CLARF( 'Left', M-OFFPI+1, N-I, A( OFFPI, I ), 1,
     $                  CONJG( TAU( I ) ), A( OFFPI, I+1 ), LDA,
     $                  WORK( 1 ) )
            A( OFFPI, I ) = AII
         END IF
*
*        Update partial column norms.
*
         DO 10 J = I + 1, N
            IF( VN1( J ).NE.ZERO ) THEN
*
*              NOTE: The following 4 lines follow from the analysis in
*              Lapack Working Note 176.
*
               TEMP = ONE - ( ABS( A( OFFPI, J ) ) / VN1( J ) )**2
               TEMP = MAX( TEMP, ZERO )
               TEMP2 = TEMP*( VN1( J ) / VN2( J ) )**2
               IF( TEMP2 .LE. TOL3Z ) THEN
                  IF( OFFPI.LT.M ) THEN
                     VN1( J ) = SCNRM2( M-OFFPI, A( OFFPI+1, J ), 1 )
                     VN2( J ) = VN1( J )
                  ELSE
                     VN1( J ) = ZERO
                     VN2( J ) = ZERO
                  END IF
               ELSE
                  VN1( J ) = VN1( J )*SQRT( TEMP )
               END IF
            END IF
   10    CONTINUE
*
   20 CONTINUE
*
      RETURN
*
*     End of CLAQP2
*
      END