summaryrefslogtreecommitdiff
path: root/SRC/clanht.f
blob: 4cd37a8da4716d87f3674cb50580570fd7ee006b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
*> \brief \b CLANHT returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian tridiagonal matrix.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*> \htmlonly
*> Download CLANHT + dependencies 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clanht.f"> 
*> [TGZ]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clanht.f"> 
*> [ZIP]</a> 
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clanht.f"> 
*> [TXT]</a>
*> \endhtmlonly 
*
*  Definition:
*  ===========
*
*       REAL             FUNCTION CLANHT( NORM, N, D, E )
* 
*       .. Scalar Arguments ..
*       CHARACTER          NORM
*       INTEGER            N
*       ..
*       .. Array Arguments ..
*       REAL               D( * )
*       COMPLEX            E( * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CLANHT  returns the value of the one norm,  or the Frobenius norm, or
*> the  infinity norm,  or the  element of  largest absolute value  of a
*> complex Hermitian tridiagonal matrix A.
*> \endverbatim
*>
*> \return CLANHT
*> \verbatim
*>
*>    CLANHT = ( max(abs(A(i,j))), NORM = 'M' or 'm'
*>             (
*>             ( norm1(A),         NORM = '1', 'O' or 'o'
*>             (
*>             ( normI(A),         NORM = 'I' or 'i'
*>             (
*>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
*>
*> where  norm1  denotes the  one norm of a matrix (maximum column sum),
*> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
*> normF  denotes the  Frobenius norm of a matrix (square root of sum of
*> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] NORM
*> \verbatim
*>          NORM is CHARACTER*1
*>          Specifies the value to be returned in CLANHT as described
*>          above.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.  When N = 0, CLANHT is
*>          set to zero.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*>          D is REAL array, dimension (N)
*>          The diagonal elements of A.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*>          E is COMPLEX array, dimension (N-1)
*>          The (n-1) sub-diagonal or super-diagonal elements of A.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complexOTHERauxiliary
*
*  =====================================================================
      REAL             FUNCTION CLANHT( NORM, N, D, E )
*
*  -- LAPACK auxiliary routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          NORM
      INTEGER            N
*     ..
*     .. Array Arguments ..
      REAL               D( * )
      COMPLEX            E( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I
      REAL               ANORM, SCALE, SUM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME, SISNAN
      EXTERNAL           LSAME, SISNAN
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLASSQ, SLASSQ
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, SQRT
*     ..
*     .. Executable Statements ..
*
      IF( N.LE.0 ) THEN
         ANORM = ZERO
      ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
*        Find max(abs(A(i,j))).
*
         ANORM = ABS( D( N ) )
         DO 10 I = 1, N - 1
            SUM = ABS( D( I ) )
            IF( ANORM .LT. SUM .OR. SISNAN( SUM ) ) ANORM = SUM
            SUM = ABS( E( I ) )
            IF( ANORM .LT. SUM .OR. SISNAN( SUM ) ) ANORM = SUM
   10    CONTINUE
      ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' .OR.
     $         LSAME( NORM, 'I' ) ) THEN
*
*        Find norm1(A).
*
         IF( N.EQ.1 ) THEN
            ANORM = ABS( D( 1 ) )
         ELSE
            ANORM = ABS( D( 1 ) )+ABS( E( 1 ) )
            SUM = ABS( E( N-1 ) )+ABS( D( N ) )
            IF( ANORM .LT. SUM .OR. SISNAN( SUM ) ) ANORM = SUM
            DO 20 I = 2, N - 1
               SUM = ABS( D( I ) )+ABS( E( I ) )+ABS( E( I-1 ) )
               IF( ANORM .LT. SUM .OR. SISNAN( SUM ) ) ANORM = SUM
   20       CONTINUE
         END IF
      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
*        Find normF(A).
*
         SCALE = ZERO
         SUM = ONE
         IF( N.GT.1 ) THEN
            CALL CLASSQ( N-1, E, 1, SCALE, SUM )
            SUM = 2*SUM
         END IF
         CALL SLASSQ( N, D, 1, SCALE, SUM )
         ANORM = SCALE*SQRT( SUM )
      END IF
*
      CLANHT = ANORM
      RETURN
*
*     End of CLANHT
*
      END