1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
|
*> \brief \b CLABRD reduces the first nb rows and columns of a general matrix to a bidiagonal form.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CLABRD + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clabrd.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clabrd.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clabrd.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y,
* LDY )
*
* .. Scalar Arguments ..
* INTEGER LDA, LDX, LDY, M, N, NB
* ..
* .. Array Arguments ..
* REAL D( * ), E( * )
* COMPLEX A( LDA, * ), TAUP( * ), TAUQ( * ), X( LDX, * ),
* $ Y( LDY, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLABRD reduces the first NB rows and columns of a complex general
*> m by n matrix A to upper or lower real bidiagonal form by a unitary
*> transformation Q**H * A * P, and returns the matrices X and Y which
*> are needed to apply the transformation to the unreduced part of A.
*>
*> If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower
*> bidiagonal form.
*>
*> This is an auxiliary routine called by CGEBRD
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows in the matrix A.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns in the matrix A.
*> \endverbatim
*>
*> \param[in] NB
*> \verbatim
*> NB is INTEGER
*> The number of leading rows and columns of A to be reduced.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> On entry, the m by n general matrix to be reduced.
*> On exit, the first NB rows and columns of the matrix are
*> overwritten; the rest of the array is unchanged.
*> If m >= n, elements on and below the diagonal in the first NB
*> columns, with the array TAUQ, represent the unitary
*> matrix Q as a product of elementary reflectors; and
*> elements above the diagonal in the first NB rows, with the
*> array TAUP, represent the unitary matrix P as a product
*> of elementary reflectors.
*> If m < n, elements below the diagonal in the first NB
*> columns, with the array TAUQ, represent the unitary
*> matrix Q as a product of elementary reflectors, and
*> elements on and above the diagonal in the first NB rows,
*> with the array TAUP, represent the unitary matrix P as
*> a product of elementary reflectors.
*> See Further Details.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] D
*> \verbatim
*> D is REAL array, dimension (NB)
*> The diagonal elements of the first NB rows and columns of
*> the reduced matrix. D(i) = A(i,i).
*> \endverbatim
*>
*> \param[out] E
*> \verbatim
*> E is REAL array, dimension (NB)
*> The off-diagonal elements of the first NB rows and columns of
*> the reduced matrix.
*> \endverbatim
*>
*> \param[out] TAUQ
*> \verbatim
*> TAUQ is COMPLEX array, dimension (NB)
*> The scalar factors of the elementary reflectors which
*> represent the unitary matrix Q. See Further Details.
*> \endverbatim
*>
*> \param[out] TAUP
*> \verbatim
*> TAUP is COMPLEX array, dimension (NB)
*> The scalar factors of the elementary reflectors which
*> represent the unitary matrix P. See Further Details.
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is COMPLEX array, dimension (LDX,NB)
*> The m-by-nb matrix X required to update the unreduced part
*> of A.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*> LDX is INTEGER
*> The leading dimension of the array X. LDX >= max(1,M).
*> \endverbatim
*>
*> \param[out] Y
*> \verbatim
*> Y is COMPLEX array, dimension (LDY,NB)
*> The n-by-nb matrix Y required to update the unreduced part
*> of A.
*> \endverbatim
*>
*> \param[in] LDY
*> \verbatim
*> LDY is INTEGER
*> The leading dimension of the array Y. LDY >= max(1,N).
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date June 2017
*
*> \ingroup complexOTHERauxiliary
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> The matrices Q and P are represented as products of elementary
*> reflectors:
*>
*> Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb)
*>
*> Each H(i) and G(i) has the form:
*>
*> H(i) = I - tauq * v * v**H and G(i) = I - taup * u * u**H
*>
*> where tauq and taup are complex scalars, and v and u are complex
*> vectors.
*>
*> If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in
*> A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in
*> A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
*>
*> If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in
*> A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in
*> A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
*>
*> The elements of the vectors v and u together form the m-by-nb matrix
*> V and the nb-by-n matrix U**H which are needed, with X and Y, to apply
*> the transformation to the unreduced part of the matrix, using a block
*> update of the form: A := A - V*Y**H - X*U**H.
*>
*> The contents of A on exit are illustrated by the following examples
*> with nb = 2:
*>
*> m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
*>
*> ( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 )
*> ( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 )
*> ( v1 v2 a a a ) ( v1 1 a a a a )
*> ( v1 v2 a a a ) ( v1 v2 a a a a )
*> ( v1 v2 a a a ) ( v1 v2 a a a a )
*> ( v1 v2 a a a )
*>
*> where a denotes an element of the original matrix which is unchanged,
*> vi denotes an element of the vector defining H(i), and ui an element
*> of the vector defining G(i).
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y,
$ LDY )
*
* -- LAPACK auxiliary routine (version 3.7.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* June 2017
*
* .. Scalar Arguments ..
INTEGER LDA, LDX, LDY, M, N, NB
* ..
* .. Array Arguments ..
REAL D( * ), E( * )
COMPLEX A( LDA, * ), TAUP( * ), TAUQ( * ), X( LDX, * ),
$ Y( LDY, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ZERO, ONE
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ),
$ ONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
INTEGER I
COMPLEX ALPHA
* ..
* .. External Subroutines ..
EXTERNAL CGEMV, CLACGV, CLARFG, CSCAL
* ..
* .. Intrinsic Functions ..
INTRINSIC MIN
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( M.LE.0 .OR. N.LE.0 )
$ RETURN
*
IF( M.GE.N ) THEN
*
* Reduce to upper bidiagonal form
*
DO 10 I = 1, NB
*
* Update A(i:m,i)
*
CALL CLACGV( I-1, Y( I, 1 ), LDY )
CALL CGEMV( 'No transpose', M-I+1, I-1, -ONE, A( I, 1 ),
$ LDA, Y( I, 1 ), LDY, ONE, A( I, I ), 1 )
CALL CLACGV( I-1, Y( I, 1 ), LDY )
CALL CGEMV( 'No transpose', M-I+1, I-1, -ONE, X( I, 1 ),
$ LDX, A( 1, I ), 1, ONE, A( I, I ), 1 )
*
* Generate reflection Q(i) to annihilate A(i+1:m,i)
*
ALPHA = A( I, I )
CALL CLARFG( M-I+1, ALPHA, A( MIN( I+1, M ), I ), 1,
$ TAUQ( I ) )
D( I ) = ALPHA
IF( I.LT.N ) THEN
A( I, I ) = ONE
*
* Compute Y(i+1:n,i)
*
CALL CGEMV( 'Conjugate transpose', M-I+1, N-I, ONE,
$ A( I, I+1 ), LDA, A( I, I ), 1, ZERO,
$ Y( I+1, I ), 1 )
CALL CGEMV( 'Conjugate transpose', M-I+1, I-1, ONE,
$ A( I, 1 ), LDA, A( I, I ), 1, ZERO,
$ Y( 1, I ), 1 )
CALL CGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
$ LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
CALL CGEMV( 'Conjugate transpose', M-I+1, I-1, ONE,
$ X( I, 1 ), LDX, A( I, I ), 1, ZERO,
$ Y( 1, I ), 1 )
CALL CGEMV( 'Conjugate transpose', I-1, N-I, -ONE,
$ A( 1, I+1 ), LDA, Y( 1, I ), 1, ONE,
$ Y( I+1, I ), 1 )
CALL CSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
*
* Update A(i,i+1:n)
*
CALL CLACGV( N-I, A( I, I+1 ), LDA )
CALL CLACGV( I, A( I, 1 ), LDA )
CALL CGEMV( 'No transpose', N-I, I, -ONE, Y( I+1, 1 ),
$ LDY, A( I, 1 ), LDA, ONE, A( I, I+1 ), LDA )
CALL CLACGV( I, A( I, 1 ), LDA )
CALL CLACGV( I-1, X( I, 1 ), LDX )
CALL CGEMV( 'Conjugate transpose', I-1, N-I, -ONE,
$ A( 1, I+1 ), LDA, X( I, 1 ), LDX, ONE,
$ A( I, I+1 ), LDA )
CALL CLACGV( I-1, X( I, 1 ), LDX )
*
* Generate reflection P(i) to annihilate A(i,i+2:n)
*
ALPHA = A( I, I+1 )
CALL CLARFG( N-I, ALPHA, A( I, MIN( I+2, N ) ),
$ LDA, TAUP( I ) )
E( I ) = ALPHA
A( I, I+1 ) = ONE
*
* Compute X(i+1:m,i)
*
CALL CGEMV( 'No transpose', M-I, N-I, ONE, A( I+1, I+1 ),
$ LDA, A( I, I+1 ), LDA, ZERO, X( I+1, I ), 1 )
CALL CGEMV( 'Conjugate transpose', N-I, I, ONE,
$ Y( I+1, 1 ), LDY, A( I, I+1 ), LDA, ZERO,
$ X( 1, I ), 1 )
CALL CGEMV( 'No transpose', M-I, I, -ONE, A( I+1, 1 ),
$ LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
CALL CGEMV( 'No transpose', I-1, N-I, ONE, A( 1, I+1 ),
$ LDA, A( I, I+1 ), LDA, ZERO, X( 1, I ), 1 )
CALL CGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
$ LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
CALL CSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
CALL CLACGV( N-I, A( I, I+1 ), LDA )
END IF
10 CONTINUE
ELSE
*
* Reduce to lower bidiagonal form
*
DO 20 I = 1, NB
*
* Update A(i,i:n)
*
CALL CLACGV( N-I+1, A( I, I ), LDA )
CALL CLACGV( I-1, A( I, 1 ), LDA )
CALL CGEMV( 'No transpose', N-I+1, I-1, -ONE, Y( I, 1 ),
$ LDY, A( I, 1 ), LDA, ONE, A( I, I ), LDA )
CALL CLACGV( I-1, A( I, 1 ), LDA )
CALL CLACGV( I-1, X( I, 1 ), LDX )
CALL CGEMV( 'Conjugate transpose', I-1, N-I+1, -ONE,
$ A( 1, I ), LDA, X( I, 1 ), LDX, ONE, A( I, I ),
$ LDA )
CALL CLACGV( I-1, X( I, 1 ), LDX )
*
* Generate reflection P(i) to annihilate A(i,i+1:n)
*
ALPHA = A( I, I )
CALL CLARFG( N-I+1, ALPHA, A( I, MIN( I+1, N ) ), LDA,
$ TAUP( I ) )
D( I ) = ALPHA
IF( I.LT.M ) THEN
A( I, I ) = ONE
*
* Compute X(i+1:m,i)
*
CALL CGEMV( 'No transpose', M-I, N-I+1, ONE, A( I+1, I ),
$ LDA, A( I, I ), LDA, ZERO, X( I+1, I ), 1 )
CALL CGEMV( 'Conjugate transpose', N-I+1, I-1, ONE,
$ Y( I, 1 ), LDY, A( I, I ), LDA, ZERO,
$ X( 1, I ), 1 )
CALL CGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
$ LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
CALL CGEMV( 'No transpose', I-1, N-I+1, ONE, A( 1, I ),
$ LDA, A( I, I ), LDA, ZERO, X( 1, I ), 1 )
CALL CGEMV( 'No transpose', M-I, I-1, -ONE, X( I+1, 1 ),
$ LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
CALL CSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
CALL CLACGV( N-I+1, A( I, I ), LDA )
*
* Update A(i+1:m,i)
*
CALL CLACGV( I-1, Y( I, 1 ), LDY )
CALL CGEMV( 'No transpose', M-I, I-1, -ONE, A( I+1, 1 ),
$ LDA, Y( I, 1 ), LDY, ONE, A( I+1, I ), 1 )
CALL CLACGV( I-1, Y( I, 1 ), LDY )
CALL CGEMV( 'No transpose', M-I, I, -ONE, X( I+1, 1 ),
$ LDX, A( 1, I ), 1, ONE, A( I+1, I ), 1 )
*
* Generate reflection Q(i) to annihilate A(i+2:m,i)
*
ALPHA = A( I+1, I )
CALL CLARFG( M-I, ALPHA, A( MIN( I+2, M ), I ), 1,
$ TAUQ( I ) )
E( I ) = ALPHA
A( I+1, I ) = ONE
*
* Compute Y(i+1:n,i)
*
CALL CGEMV( 'Conjugate transpose', M-I, N-I, ONE,
$ A( I+1, I+1 ), LDA, A( I+1, I ), 1, ZERO,
$ Y( I+1, I ), 1 )
CALL CGEMV( 'Conjugate transpose', M-I, I-1, ONE,
$ A( I+1, 1 ), LDA, A( I+1, I ), 1, ZERO,
$ Y( 1, I ), 1 )
CALL CGEMV( 'No transpose', N-I, I-1, -ONE, Y( I+1, 1 ),
$ LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
CALL CGEMV( 'Conjugate transpose', M-I, I, ONE,
$ X( I+1, 1 ), LDX, A( I+1, I ), 1, ZERO,
$ Y( 1, I ), 1 )
CALL CGEMV( 'Conjugate transpose', I, N-I, -ONE,
$ A( 1, I+1 ), LDA, Y( 1, I ), 1, ONE,
$ Y( I+1, I ), 1 )
CALL CSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
ELSE
CALL CLACGV( N-I+1, A( I, I ), LDA )
END IF
20 CONTINUE
END IF
RETURN
*
* End of CLABRD
*
END
|