1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
|
*> \brief \b CLA_SYRCOND_X computes the infinity norm condition number of op(A)*diag(x) for symmetric indefinite matrices.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CLA_SYRCOND_X + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_syrcond_x.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_syrcond_x.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_syrcond_x.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* REAL FUNCTION CLA_SYRCOND_X( UPLO, N, A, LDA, AF, LDAF, IPIV, X,
* INFO, WORK, RWORK )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER N, LDA, LDAF, INFO
* ..
* .. Array Arguments ..
* INTEGER IPIV( * )
* COMPLEX A( LDA, * ), AF( LDAF, * ), WORK( * ), X( * )
* REAL RWORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLA_SYRCOND_X Computes the infinity norm condition number of
*> op(A) * diag(X) where X is a COMPLEX vector.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': Upper triangle of A is stored;
*> = 'L': Lower triangle of A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of linear equations, i.e., the order of the
*> matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> On entry, the N-by-N matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in] AF
*> \verbatim
*> AF is COMPLEX array, dimension (LDAF,N)
*> The block diagonal matrix D and the multipliers used to
*> obtain the factor U or L as computed by CSYTRF.
*> \endverbatim
*>
*> \param[in] LDAF
*> \verbatim
*> LDAF is INTEGER
*> The leading dimension of the array AF. LDAF >= max(1,N).
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (N)
*> Details of the interchanges and the block structure of D
*> as determined by CSYTRF.
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*> X is COMPLEX array, dimension (N)
*> The vector X in the formula op(A) * diag(X).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: Successful exit.
*> i > 0: The ith argument is invalid.
*> \endverbatim
*>
*> \param[in] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (2*N).
*> Workspace.
*> \endverbatim
*>
*> \param[in] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (N).
*> Workspace.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date September 2012
*
*> \ingroup complexSYcomputational
*
* =====================================================================
REAL FUNCTION CLA_SYRCOND_X( UPLO, N, A, LDA, AF, LDAF, IPIV, X,
$ INFO, WORK, RWORK )
*
* -- LAPACK computational routine (version 3.4.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* September 2012
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER N, LDA, LDAF, INFO
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
COMPLEX A( LDA, * ), AF( LDAF, * ), WORK( * ), X( * )
REAL RWORK( * )
* ..
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER KASE
REAL AINVNM, ANORM, TMP
INTEGER I, J
LOGICAL UP, UPPER
COMPLEX ZDUM
* ..
* .. Local Arrays ..
INTEGER ISAVE( 3 )
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL CLACN2, CSYTRS, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* ..
* .. Statement Functions ..
REAL CABS1
* ..
* .. Statement Function Definitions ..
CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
* ..
* .. Executable Statements ..
*
CLA_SYRCOND_X = 0.0E+0
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF ( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
INFO = -6
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CLA_SYRCOND_X', -INFO )
RETURN
END IF
UP = .FALSE.
IF ( LSAME( UPLO, 'U' ) ) UP = .TRUE.
*
* Compute norm of op(A)*op2(C).
*
ANORM = 0.0
IF ( UP ) THEN
DO I = 1, N
TMP = 0.0E+0
DO J = 1, I
TMP = TMP + CABS1( A( J, I ) * X( J ) )
END DO
DO J = I+1, N
TMP = TMP + CABS1( A( I, J ) * X( J ) )
END DO
RWORK( I ) = TMP
ANORM = MAX( ANORM, TMP )
END DO
ELSE
DO I = 1, N
TMP = 0.0E+0
DO J = 1, I
TMP = TMP + CABS1( A( I, J ) * X( J ) )
END DO
DO J = I+1, N
TMP = TMP + CABS1( A( J, I ) * X( J ) )
END DO
RWORK( I ) = TMP
ANORM = MAX( ANORM, TMP )
END DO
END IF
*
* Quick return if possible.
*
IF( N.EQ.0 ) THEN
CLA_SYRCOND_X = 1.0E+0
RETURN
ELSE IF( ANORM .EQ. 0.0E+0 ) THEN
RETURN
END IF
*
* Estimate the norm of inv(op(A)).
*
AINVNM = 0.0E+0
*
KASE = 0
10 CONTINUE
CALL CLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
IF( KASE.NE.0 ) THEN
IF( KASE.EQ.2 ) THEN
*
* Multiply by R.
*
DO I = 1, N
WORK( I ) = WORK( I ) * RWORK( I )
END DO
*
IF ( UP ) THEN
CALL CSYTRS( 'U', N, 1, AF, LDAF, IPIV,
$ WORK, N, INFO )
ELSE
CALL CSYTRS( 'L', N, 1, AF, LDAF, IPIV,
$ WORK, N, INFO )
ENDIF
*
* Multiply by inv(X).
*
DO I = 1, N
WORK( I ) = WORK( I ) / X( I )
END DO
ELSE
*
* Multiply by inv(X**T).
*
DO I = 1, N
WORK( I ) = WORK( I ) / X( I )
END DO
*
IF ( UP ) THEN
CALL CSYTRS( 'U', N, 1, AF, LDAF, IPIV,
$ WORK, N, INFO )
ELSE
CALL CSYTRS( 'L', N, 1, AF, LDAF, IPIV,
$ WORK, N, INFO )
END IF
*
* Multiply by R.
*
DO I = 1, N
WORK( I ) = WORK( I ) * RWORK( I )
END DO
END IF
GO TO 10
END IF
*
* Compute the estimate of the reciprocal condition number.
*
IF( AINVNM .NE. 0.0E+0 )
$ CLA_SYRCOND_X = 1.0E+0 / AINVNM
*
RETURN
*
END
|