summaryrefslogtreecommitdiff
path: root/SRC/cla_gbrfsx_extended.f
blob: e1a4e3e9113bc531d5fc7789dd5ba414ee41f641 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
      SUBROUTINE CLA_GBRFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, KL, KU,
     $                                NRHS, AB, LDAB, AFB, LDAFB, IPIV,
     $                                COLEQU, C, B, LDB, Y, LDY,
     $                                BERR_OUT, N_NORMS, ERRS_N, ERRS_C,
     $                                RES, AYB, DY, Y_TAIL, RCOND,
     $                                ITHRESH, RTHRESH, DZ_UB,
     $                                IGNORE_CWISE, INFO )
*
*     -- LAPACK routine (version 3.2)                                 --
*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
*     -- Jason Riedy of Univ. of California Berkeley.                 --
*     -- November 2008                                                --
*
*     -- LAPACK is a software package provided by Univ. of Tennessee, --
*     -- Univ. of California Berkeley and NAG Ltd.                    --
*
      IMPLICIT NONE
*     ..
*     .. Scalar Arguments ..
      INTEGER            INFO, LDAB, LDAFB, LDB, LDY, N, KL, KU, NRHS,
     $                   PREC_TYPE, TRANS_TYPE, N_NORMS, ITHRESH
      LOGICAL            COLEQU, IGNORE_CWISE
      REAL               RTHRESH, DZ_UB
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX            AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
     $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
      REAL               C( * ), AYB(*), RCOND, BERR_OUT( * ),
     $                   ERRS_N( NRHS, * ), ERRS_C( NRHS, * )
*     ..
*
*  =====================================================================
*
*     .. Local Scalars ..
      CHARACTER          TRANS
      INTEGER            CNT, I, J, M, X_STATE, Z_STATE, Y_PREC_STATE
      REAL               YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
     $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
     $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
     $                   EPS, HUGEVAL, INCR_THRESH
      LOGICAL            INCR_PREC
      COMPLEX            ZDUM
*     ..
*     .. Parameters ..
      INTEGER            UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
     $                   NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
     $                   EXTRA_Y
      PARAMETER          ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
     $                   CONV_STATE = 2, NOPROG_STATE = 3 )
      PARAMETER          ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
     $                   EXTRA_Y = 2 )
      INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
      INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
      INTEGER            CMP_ERR_I, PIV_GROWTH_I
      PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
     $                   BERR_I = 3 )
      PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
      PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
     $                   PIV_GROWTH_I = 9 )
      INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
     $                   LA_LINRX_CWISE_I
      PARAMETER          ( LA_LINRX_ITREF_I = 1,
     $                   LA_LINRX_ITHRESH_I = 2 )
      PARAMETER          ( LA_LINRX_CWISE_I = 3 )
      INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
     $                   LA_LINRX_RCOND_I
      PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
      PARAMETER          ( LA_LINRX_RCOND_I = 3 )
      INTEGER            LA_LINRX_MAX_N_ERRS
      PARAMETER          ( LA_LINRX_MAX_N_ERRS = 3 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           CAXPY, CCOPY, CGBTRS, CGBMV, BLAS_CGBMV_X,
     $                   BLAS_CGBMV2_X, CLA_GBAMV, CLA_WWADDW, SLAMCH,
     $                   CHLA_TRANSTYPE, CLA_LIN_BERR
      REAL               SLAMCH
      CHARACTER          CHLA_TRANSTYPE
*     ..
*     .. Intrinsic Functions..
      INTRINSIC          ABS, MAX, MIN
*     ..
*     .. Statement Functions ..
      REAL               CABS1
*     ..
*     .. Statement Function Definitions ..
      CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
*     ..
*     .. Executable Statements ..
*
      IF (INFO.NE.0) RETURN
      TRANS = CHLA_TRANSTYPE(TRANS_TYPE)
      EPS = SLAMCH( 'Epsilon' )
      HUGEVAL = SLAMCH( 'Overflow' )
*     Force HUGEVAL to Inf
      HUGEVAL = HUGEVAL * HUGEVAL
*     Using HUGEVAL may lead to spurious underflows.
      INCR_THRESH = REAL( N ) * EPS
      M = KL+KU+1

      DO J = 1, NRHS
         Y_PREC_STATE = EXTRA_RESIDUAL
         IF ( Y_PREC_STATE .EQ. EXTRA_Y ) then
            DO I = 1, N
               Y_TAIL( I ) = 0.0
            END DO
         END IF

         DXRAT = 0.0E+0
         DXRATMAX = 0.0E+0
         DZRAT = 0.0E+0
         DZRATMAX = 0.0E+0
         FINAL_DX_X = HUGEVAL
         FINAL_DZ_Z = HUGEVAL
         PREVNORMDX = HUGEVAL
         PREV_DZ_Z = HUGEVAL
         DZ_Z = HUGEVAL
         DX_X = HUGEVAL

         X_STATE = WORKING_STATE
         Z_STATE = UNSTABLE_STATE
         INCR_PREC = .FALSE.

         DO CNT = 1, ITHRESH
*
*        Compute residual RES = B_s - op(A_s) * Y,
*            op(A) = A, A**T, or A**H depending on TRANS (and type).
*
            CALL CCOPY( N, B( 1, J ), 1, RES, 1 )
            IF ( Y_PREC_STATE .EQ. BASE_RESIDUAL ) THEN
               CALL CGBMV( TRANS, M, N, KL, KU, (-1.0E+0,0.0E+0), AB,
     $              LDAB, Y( 1, J ), 1, (1.0E+0,0.0E+0), RES, 1 )
            ELSE IF ( Y_PREC_STATE .EQ. EXTRA_RESIDUAL ) THEN
               CALL BLAS_CGBMV_X( TRANS_TYPE, N, N, KL, KU,
     $              (-1.0E+0,0.0E+0), AB, LDAB, Y( 1, J ), 1,
     $              (1.0E+0,0.0E+0), RES, 1, PREC_TYPE )
            ELSE
               CALL BLAS_CGBMV2_X( TRANS_TYPE, N, N, KL, KU,
     $              (-1.0E+0,0.0E+0), AB, LDAB, Y( 1, J ), Y_TAIL, 1,
     $              (1.0E+0,0.0E+0), RES, 1, PREC_TYPE )
            END IF

!        XXX: RES is no longer needed.
            CALL CCOPY( N, RES, 1, DY, 1 )
            CALL CGBTRS( TRANS, N, KL, KU, 1, AFB, LDAFB, IPIV, DY, N,
     $           INFO )
*
*         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
*
            NORMX = 0.0E+0
            NORMY = 0.0E+0
            NORMDX = 0.0E+0
            DZ_Z = 0.0E+0
            YMIN = HUGEVAL

            DO I = 1, N
               YK = CABS1( Y( I, J ) )
               DYK = CABS1( DY( I ) )

               IF (YK .NE. 0.0) THEN
                  DZ_Z = MAX( DZ_Z, DYK / YK )
               ELSE IF ( DYK .NE. 0.0 ) THEN
                  DZ_Z = HUGEVAL
               END IF

               YMIN = MIN( YMIN, YK )

               NORMY = MAX( NORMY, YK )

               IF ( COLEQU ) THEN
                  NORMX = MAX( NORMX, YK * C( I ) )
                  NORMDX = MAX(NORMDX, DYK * C(I))
               ELSE
                  NORMX = NORMY
                  NORMDX = MAX( NORMDX, DYK )
               END IF
            END DO

            IF ( NORMX .NE. 0.0 ) THEN
               DX_X = NORMDX / NORMX
            ELSE IF ( NORMDX .EQ. 0.0 ) THEN
               DX_X = 0.0
            ELSE
               DX_X = HUGEVAL
            END IF

            DXRAT = NORMDX / PREVNORMDX
            DZRAT = DZ_Z / PREV_DZ_Z
*
*         Check termination criteria.
*
            IF (.NOT.IGNORE_CWISE
     $           .AND. YMIN*RCOND .LT. INCR_THRESH*NORMY
     $           .AND. Y_PREC_STATE .LT. EXTRA_Y )
     $           INCR_PREC = .TRUE.

            IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
     $           X_STATE = WORKING_STATE
            IF ( X_STATE .EQ. WORKING_STATE ) THEN
               IF ( DX_X .LE. EPS ) THEN
                  X_STATE = CONV_STATE
               ELSE IF ( DXRAT .GT. RTHRESH ) THEN
                  IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
                     INCR_PREC = .TRUE.
                  ELSE
                     X_STATE = NOPROG_STATE
                  END IF
               ELSE
                  IF ( DXRAT .GT. DXRATMAX ) DXRATMAX = DXRAT
               END IF
               IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
            END IF

            IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
     $           Z_STATE = WORKING_STATE
            IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
     $           Z_STATE = WORKING_STATE
            IF ( Z_STATE .EQ. WORKING_STATE ) THEN
               IF ( DZ_Z .LE. EPS ) THEN
                  Z_STATE = CONV_STATE
               ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
                  Z_STATE = UNSTABLE_STATE
                  DZRATMAX = 0.0
                  FINAL_DZ_Z = HUGEVAL
               ELSE IF ( DZRAT .GT. RTHRESH ) THEN
                  IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
                     INCR_PREC = .TRUE.
                  ELSE
                     Z_STATE = NOPROG_STATE
                  END IF
               ELSE
                  IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
               END IF
               IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
            END IF
*
*           Exit if both normwise and componentwise stopped working,
*           but if componentwise is unstable, let it go at least two
*           iterations.
*
            IF ( X_STATE.NE.WORKING_STATE ) THEN
               IF ( IGNORE_CWISE ) GOTO 666
               IF ( Z_STATE.EQ.NOPROG_STATE .OR. Z_STATE.EQ.CONV_STATE )
     $              GOTO 666
               IF ( Z_STATE.EQ.UNSTABLE_STATE .AND. CNT.GT.1 ) GOTO 666
            END IF

            IF ( INCR_PREC ) THEN
               INCR_PREC = .FALSE.
               Y_PREC_STATE = Y_PREC_STATE + 1
               DO I = 1, N
                  Y_TAIL( I ) = 0.0
               END DO
            END IF

            PREVNORMDX = NORMDX
            PREV_DZ_Z = DZ_Z
*
*           Update soluton.
*
            IF ( Y_PREC_STATE .LT. EXTRA_Y ) THEN
               CALL CAXPY( N, (1.0E+0,0.0E+0), DY, 1, Y(1,J), 1 )
            ELSE
               CALL CLA_WWADDW( N, Y(1,J), Y_TAIL, DY )
            END IF

         END DO
*        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT.
 666     CONTINUE
*
*     Set final_* when cnt hits ithresh.
*
         IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
         IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
*
*     Compute error bounds.
*
         IF ( N_NORMS .GE. 1 ) THEN
            ERRS_N( J, LA_LINRX_ERR_I ) = FINAL_DX_X / (1 - DXRATMAX)
         END IF
         IF ( N_NORMS .GE. 2 ) THEN
            ERRS_C( J, LA_LINRX_ERR_I ) = FINAL_DZ_Z / (1 - DZRATMAX)
         END IF
*
*     Compute componentwise relative backward error from formula
*         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
*     where abs(Z) is the componentwise absolute value of the matrix
*     or vector Z.
*
*        Compute residual RES = B_s - op(A_s) * Y,
*            op(A) = A, A**T, or A**H depending on TRANS (and type).
*
         CALL CCOPY( N, B( 1, J ), 1, RES, 1 )
         CALL CGBMV( TRANS, N, N, KL, KU, (-1.0E+0,0.0E+0), AB, LDAB,
     $        Y(1,J), 1, (1.0E+0,0.0E+0), RES, 1 )

         DO I = 1, N
            AYB( I ) = CABS1( B( I, J ) )
         END DO
*
*     Compute abs(op(A_s))*abs(Y) + abs(B_s).
*
        CALL CLA_GBAMV( TRANS_TYPE, N, N, KL, KU, 1.0E+0,
     $        AB, LDAB, Y(1, J), 1, 1.0E+0, AYB, 1 )

         CALL CLA_LIN_BERR( N, N, 1, RES, AYB, BERR_OUT( J ) )
*
*     End of loop for each RHS.
*
      END DO
*
      RETURN
      END