1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
|
SUBROUTINE CHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, LDT,
$ ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK,
$ RWORK, INFO )
*
* -- LAPACK routine (version 3.2) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER COMPQ, COMPZ, JOB
INTEGER IHI, ILO, INFO, LDH, LDQ, LDT, LDZ, LWORK, N
* ..
* .. Array Arguments ..
REAL RWORK( * )
COMPLEX ALPHA( * ), BETA( * ), H( LDH, * ),
$ Q( LDQ, * ), T( LDT, * ), WORK( * ),
$ Z( LDZ, * )
* ..
*
* Purpose
* =======
*
* CHGEQZ computes the eigenvalues of a complex matrix pair (H,T),
* where H is an upper Hessenberg matrix and T is upper triangular,
* using the single-shift QZ method.
* Matrix pairs of this type are produced by the reduction to
* generalized upper Hessenberg form of a complex matrix pair (A,B):
*
* A = Q1*H*Z1**H, B = Q1*T*Z1**H,
*
* as computed by CGGHRD.
*
* If JOB='S', then the Hessenberg-triangular pair (H,T) is
* also reduced to generalized Schur form,
*
* H = Q*S*Z**H, T = Q*P*Z**H,
*
* where Q and Z are unitary matrices and S and P are upper triangular.
*
* Optionally, the unitary matrix Q from the generalized Schur
* factorization may be postmultiplied into an input matrix Q1, and the
* unitary matrix Z may be postmultiplied into an input matrix Z1.
* If Q1 and Z1 are the unitary matrices from CGGHRD that reduced
* the matrix pair (A,B) to generalized Hessenberg form, then the output
* matrices Q1*Q and Z1*Z are the unitary factors from the generalized
* Schur factorization of (A,B):
*
* A = (Q1*Q)*S*(Z1*Z)**H, B = (Q1*Q)*P*(Z1*Z)**H.
*
* To avoid overflow, eigenvalues of the matrix pair (H,T)
* (equivalently, of (A,B)) are computed as a pair of complex values
* (alpha,beta). If beta is nonzero, lambda = alpha / beta is an
* eigenvalue of the generalized nonsymmetric eigenvalue problem (GNEP)
* A*x = lambda*B*x
* and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the
* alternate form of the GNEP
* mu*A*y = B*y.
* The values of alpha and beta for the i-th eigenvalue can be read
* directly from the generalized Schur form: alpha = S(i,i),
* beta = P(i,i).
*
* Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix
* Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973),
* pp. 241--256.
*
* Arguments
* =========
*
* JOB (input) CHARACTER*1
* = 'E': Compute eigenvalues only;
* = 'S': Computer eigenvalues and the Schur form.
*
* COMPQ (input) CHARACTER*1
* = 'N': Left Schur vectors (Q) are not computed;
* = 'I': Q is initialized to the unit matrix and the matrix Q
* of left Schur vectors of (H,T) is returned;
* = 'V': Q must contain a unitary matrix Q1 on entry and
* the product Q1*Q is returned.
*
* COMPZ (input) CHARACTER*1
* = 'N': Right Schur vectors (Z) are not computed;
* = 'I': Q is initialized to the unit matrix and the matrix Z
* of right Schur vectors of (H,T) is returned;
* = 'V': Z must contain a unitary matrix Z1 on entry and
* the product Z1*Z is returned.
*
* N (input) INTEGER
* The order of the matrices H, T, Q, and Z. N >= 0.
*
* ILO (input) INTEGER
* IHI (input) INTEGER
* ILO and IHI mark the rows and columns of H which are in
* Hessenberg form. It is assumed that A is already upper
* triangular in rows and columns 1:ILO-1 and IHI+1:N.
* If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0.
*
* H (input/output) COMPLEX array, dimension (LDH, N)
* On entry, the N-by-N upper Hessenberg matrix H.
* On exit, if JOB = 'S', H contains the upper triangular
* matrix S from the generalized Schur factorization.
* If JOB = 'E', the diagonal of H matches that of S, but
* the rest of H is unspecified.
*
* LDH (input) INTEGER
* The leading dimension of the array H. LDH >= max( 1, N ).
*
* T (input/output) COMPLEX array, dimension (LDT, N)
* On entry, the N-by-N upper triangular matrix T.
* On exit, if JOB = 'S', T contains the upper triangular
* matrix P from the generalized Schur factorization.
* If JOB = 'E', the diagonal of T matches that of P, but
* the rest of T is unspecified.
*
* LDT (input) INTEGER
* The leading dimension of the array T. LDT >= max( 1, N ).
*
* ALPHA (output) COMPLEX array, dimension (N)
* The complex scalars alpha that define the eigenvalues of
* GNEP. ALPHA(i) = S(i,i) in the generalized Schur
* factorization.
*
* BETA (output) COMPLEX array, dimension (N)
* The real non-negative scalars beta that define the
* eigenvalues of GNEP. BETA(i) = P(i,i) in the generalized
* Schur factorization.
*
* Together, the quantities alpha = ALPHA(j) and beta = BETA(j)
* represent the j-th eigenvalue of the matrix pair (A,B), in
* one of the forms lambda = alpha/beta or mu = beta/alpha.
* Since either lambda or mu may overflow, they should not,
* in general, be computed.
*
* Q (input/output) COMPLEX array, dimension (LDQ, N)
* On entry, if COMPZ = 'V', the unitary matrix Q1 used in the
* reduction of (A,B) to generalized Hessenberg form.
* On exit, if COMPZ = 'I', the unitary matrix of left Schur
* vectors of (H,T), and if COMPZ = 'V', the unitary matrix of
* left Schur vectors of (A,B).
* Not referenced if COMPZ = 'N'.
*
* LDQ (input) INTEGER
* The leading dimension of the array Q. LDQ >= 1.
* If COMPQ='V' or 'I', then LDQ >= N.
*
* Z (input/output) COMPLEX array, dimension (LDZ, N)
* On entry, if COMPZ = 'V', the unitary matrix Z1 used in the
* reduction of (A,B) to generalized Hessenberg form.
* On exit, if COMPZ = 'I', the unitary matrix of right Schur
* vectors of (H,T), and if COMPZ = 'V', the unitary matrix of
* right Schur vectors of (A,B).
* Not referenced if COMPZ = 'N'.
*
* LDZ (input) INTEGER
* The leading dimension of the array Z. LDZ >= 1.
* If COMPZ='V' or 'I', then LDZ >= N.
*
* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
* On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK >= max(1,N).
*
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the optimal size of the WORK array, returns
* this value as the first entry of the WORK array, and no error
* message related to LWORK is issued by XERBLA.
*
* RWORK (workspace) REAL array, dimension (N)
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* = 1,...,N: the QZ iteration did not converge. (H,T) is not
* in Schur form, but ALPHA(i) and BETA(i),
* i=INFO+1,...,N should be correct.
* = N+1,...,2*N: the shift calculation failed. (H,T) is not
* in Schur form, but ALPHA(i) and BETA(i),
* i=INFO-N+1,...,N should be correct.
*
* Further Details
* ===============
*
* We assume that complex ABS works as long as its value is less than
* overflow.
*
* =====================================================================
*
* .. Parameters ..
COMPLEX CZERO, CONE
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
$ CONE = ( 1.0E+0, 0.0E+0 ) )
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
REAL HALF
PARAMETER ( HALF = 0.5E+0 )
* ..
* .. Local Scalars ..
LOGICAL ILAZR2, ILAZRO, ILQ, ILSCHR, ILZ, LQUERY
INTEGER ICOMPQ, ICOMPZ, IFIRST, IFRSTM, IITER, ILAST,
$ ILASTM, IN, ISCHUR, ISTART, J, JC, JCH, JITER,
$ JR, MAXIT
REAL ABSB, ANORM, ASCALE, ATOL, BNORM, BSCALE, BTOL,
$ C, SAFMIN, TEMP, TEMP2, TEMPR, ULP
COMPLEX ABI22, AD11, AD12, AD21, AD22, CTEMP, CTEMP2,
$ CTEMP3, ESHIFT, RTDISC, S, SHIFT, SIGNBC, T1,
$ U12, X
* ..
* .. External Functions ..
LOGICAL LSAME
REAL CLANHS, SLAMCH
EXTERNAL LSAME, CLANHS, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL CLARTG, CLASET, CROT, CSCAL, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, AIMAG, CMPLX, CONJG, MAX, MIN, REAL, SQRT
* ..
* .. Statement Functions ..
REAL ABS1
* ..
* .. Statement Function definitions ..
ABS1( X ) = ABS( REAL( X ) ) + ABS( AIMAG( X ) )
* ..
* .. Executable Statements ..
*
* Decode JOB, COMPQ, COMPZ
*
IF( LSAME( JOB, 'E' ) ) THEN
ILSCHR = .FALSE.
ISCHUR = 1
ELSE IF( LSAME( JOB, 'S' ) ) THEN
ILSCHR = .TRUE.
ISCHUR = 2
ELSE
ISCHUR = 0
END IF
*
IF( LSAME( COMPQ, 'N' ) ) THEN
ILQ = .FALSE.
ICOMPQ = 1
ELSE IF( LSAME( COMPQ, 'V' ) ) THEN
ILQ = .TRUE.
ICOMPQ = 2
ELSE IF( LSAME( COMPQ, 'I' ) ) THEN
ILQ = .TRUE.
ICOMPQ = 3
ELSE
ICOMPQ = 0
END IF
*
IF( LSAME( COMPZ, 'N' ) ) THEN
ILZ = .FALSE.
ICOMPZ = 1
ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
ILZ = .TRUE.
ICOMPZ = 2
ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
ILZ = .TRUE.
ICOMPZ = 3
ELSE
ICOMPZ = 0
END IF
*
* Check Argument Values
*
INFO = 0
WORK( 1 ) = MAX( 1, N )
LQUERY = ( LWORK.EQ.-1 )
IF( ISCHUR.EQ.0 ) THEN
INFO = -1
ELSE IF( ICOMPQ.EQ.0 ) THEN
INFO = -2
ELSE IF( ICOMPZ.EQ.0 ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( ILO.LT.1 ) THEN
INFO = -5
ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
INFO = -6
ELSE IF( LDH.LT.N ) THEN
INFO = -8
ELSE IF( LDT.LT.N ) THEN
INFO = -10
ELSE IF( LDQ.LT.1 .OR. ( ILQ .AND. LDQ.LT.N ) ) THEN
INFO = -14
ELSE IF( LDZ.LT.1 .OR. ( ILZ .AND. LDZ.LT.N ) ) THEN
INFO = -16
ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
INFO = -18
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CHGEQZ', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
c WORK( 1 ) = CMPLX( 1 )
IF( N.LE.0 ) THEN
WORK( 1 ) = CMPLX( 1 )
RETURN
END IF
*
* Initialize Q and Z
*
IF( ICOMPQ.EQ.3 )
$ CALL CLASET( 'Full', N, N, CZERO, CONE, Q, LDQ )
IF( ICOMPZ.EQ.3 )
$ CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDZ )
*
* Machine Constants
*
IN = IHI + 1 - ILO
SAFMIN = SLAMCH( 'S' )
ULP = SLAMCH( 'E' )*SLAMCH( 'B' )
ANORM = CLANHS( 'F', IN, H( ILO, ILO ), LDH, RWORK )
BNORM = CLANHS( 'F', IN, T( ILO, ILO ), LDT, RWORK )
ATOL = MAX( SAFMIN, ULP*ANORM )
BTOL = MAX( SAFMIN, ULP*BNORM )
ASCALE = ONE / MAX( SAFMIN, ANORM )
BSCALE = ONE / MAX( SAFMIN, BNORM )
*
*
* Set Eigenvalues IHI+1:N
*
DO 10 J = IHI + 1, N
ABSB = ABS( T( J, J ) )
IF( ABSB.GT.SAFMIN ) THEN
SIGNBC = CONJG( T( J, J ) / ABSB )
T( J, J ) = ABSB
IF( ILSCHR ) THEN
CALL CSCAL( J-1, SIGNBC, T( 1, J ), 1 )
CALL CSCAL( J, SIGNBC, H( 1, J ), 1 )
ELSE
H( J, J ) = H( J, J )*SIGNBC
END IF
IF( ILZ )
$ CALL CSCAL( N, SIGNBC, Z( 1, J ), 1 )
ELSE
T( J, J ) = CZERO
END IF
ALPHA( J ) = H( J, J )
BETA( J ) = T( J, J )
10 CONTINUE
*
* If IHI < ILO, skip QZ steps
*
IF( IHI.LT.ILO )
$ GO TO 190
*
* MAIN QZ ITERATION LOOP
*
* Initialize dynamic indices
*
* Eigenvalues ILAST+1:N have been found.
* Column operations modify rows IFRSTM:whatever
* Row operations modify columns whatever:ILASTM
*
* If only eigenvalues are being computed, then
* IFRSTM is the row of the last splitting row above row ILAST;
* this is always at least ILO.
* IITER counts iterations since the last eigenvalue was found,
* to tell when to use an extraordinary shift.
* MAXIT is the maximum number of QZ sweeps allowed.
*
ILAST = IHI
IF( ILSCHR ) THEN
IFRSTM = 1
ILASTM = N
ELSE
IFRSTM = ILO
ILASTM = IHI
END IF
IITER = 0
ESHIFT = CZERO
MAXIT = 30*( IHI-ILO+1 )
*
DO 170 JITER = 1, MAXIT
*
* Check for too many iterations.
*
IF( JITER.GT.MAXIT )
$ GO TO 180
*
* Split the matrix if possible.
*
* Two tests:
* 1: H(j,j-1)=0 or j=ILO
* 2: T(j,j)=0
*
* Special case: j=ILAST
*
IF( ILAST.EQ.ILO ) THEN
GO TO 60
ELSE
IF( ABS1( H( ILAST, ILAST-1 ) ).LE.ATOL ) THEN
H( ILAST, ILAST-1 ) = CZERO
GO TO 60
END IF
END IF
*
IF( ABS( T( ILAST, ILAST ) ).LE.BTOL ) THEN
T( ILAST, ILAST ) = CZERO
GO TO 50
END IF
*
* General case: j<ILAST
*
DO 40 J = ILAST - 1, ILO, -1
*
* Test 1: for H(j,j-1)=0 or j=ILO
*
IF( J.EQ.ILO ) THEN
ILAZRO = .TRUE.
ELSE
IF( ABS1( H( J, J-1 ) ).LE.ATOL ) THEN
H( J, J-1 ) = CZERO
ILAZRO = .TRUE.
ELSE
ILAZRO = .FALSE.
END IF
END IF
*
* Test 2: for T(j,j)=0
*
IF( ABS( T( J, J ) ).LT.BTOL ) THEN
T( J, J ) = CZERO
*
* Test 1a: Check for 2 consecutive small subdiagonals in A
*
ILAZR2 = .FALSE.
IF( .NOT.ILAZRO ) THEN
IF( ABS1( H( J, J-1 ) )*( ASCALE*ABS1( H( J+1,
$ J ) ) ).LE.ABS1( H( J, J ) )*( ASCALE*ATOL ) )
$ ILAZR2 = .TRUE.
END IF
*
* If both tests pass (1 & 2), i.e., the leading diagonal
* element of B in the block is zero, split a 1x1 block off
* at the top. (I.e., at the J-th row/column) The leading
* diagonal element of the remainder can also be zero, so
* this may have to be done repeatedly.
*
IF( ILAZRO .OR. ILAZR2 ) THEN
DO 20 JCH = J, ILAST - 1
CTEMP = H( JCH, JCH )
CALL CLARTG( CTEMP, H( JCH+1, JCH ), C, S,
$ H( JCH, JCH ) )
H( JCH+1, JCH ) = CZERO
CALL CROT( ILASTM-JCH, H( JCH, JCH+1 ), LDH,
$ H( JCH+1, JCH+1 ), LDH, C, S )
CALL CROT( ILASTM-JCH, T( JCH, JCH+1 ), LDT,
$ T( JCH+1, JCH+1 ), LDT, C, S )
IF( ILQ )
$ CALL CROT( N, Q( 1, JCH ), 1, Q( 1, JCH+1 ), 1,
$ C, CONJG( S ) )
IF( ILAZR2 )
$ H( JCH, JCH-1 ) = H( JCH, JCH-1 )*C
ILAZR2 = .FALSE.
IF( ABS1( T( JCH+1, JCH+1 ) ).GE.BTOL ) THEN
IF( JCH+1.GE.ILAST ) THEN
GO TO 60
ELSE
IFIRST = JCH + 1
GO TO 70
END IF
END IF
T( JCH+1, JCH+1 ) = CZERO
20 CONTINUE
GO TO 50
ELSE
*
* Only test 2 passed -- chase the zero to T(ILAST,ILAST)
* Then process as in the case T(ILAST,ILAST)=0
*
DO 30 JCH = J, ILAST - 1
CTEMP = T( JCH, JCH+1 )
CALL CLARTG( CTEMP, T( JCH+1, JCH+1 ), C, S,
$ T( JCH, JCH+1 ) )
T( JCH+1, JCH+1 ) = CZERO
IF( JCH.LT.ILASTM-1 )
$ CALL CROT( ILASTM-JCH-1, T( JCH, JCH+2 ), LDT,
$ T( JCH+1, JCH+2 ), LDT, C, S )
CALL CROT( ILASTM-JCH+2, H( JCH, JCH-1 ), LDH,
$ H( JCH+1, JCH-1 ), LDH, C, S )
IF( ILQ )
$ CALL CROT( N, Q( 1, JCH ), 1, Q( 1, JCH+1 ), 1,
$ C, CONJG( S ) )
CTEMP = H( JCH+1, JCH )
CALL CLARTG( CTEMP, H( JCH+1, JCH-1 ), C, S,
$ H( JCH+1, JCH ) )
H( JCH+1, JCH-1 ) = CZERO
CALL CROT( JCH+1-IFRSTM, H( IFRSTM, JCH ), 1,
$ H( IFRSTM, JCH-1 ), 1, C, S )
CALL CROT( JCH-IFRSTM, T( IFRSTM, JCH ), 1,
$ T( IFRSTM, JCH-1 ), 1, C, S )
IF( ILZ )
$ CALL CROT( N, Z( 1, JCH ), 1, Z( 1, JCH-1 ), 1,
$ C, S )
30 CONTINUE
GO TO 50
END IF
ELSE IF( ILAZRO ) THEN
*
* Only test 1 passed -- work on J:ILAST
*
IFIRST = J
GO TO 70
END IF
*
* Neither test passed -- try next J
*
40 CONTINUE
*
* (Drop-through is "impossible")
*
INFO = 2*N + 1
GO TO 210
*
* T(ILAST,ILAST)=0 -- clear H(ILAST,ILAST-1) to split off a
* 1x1 block.
*
50 CONTINUE
CTEMP = H( ILAST, ILAST )
CALL CLARTG( CTEMP, H( ILAST, ILAST-1 ), C, S,
$ H( ILAST, ILAST ) )
H( ILAST, ILAST-1 ) = CZERO
CALL CROT( ILAST-IFRSTM, H( IFRSTM, ILAST ), 1,
$ H( IFRSTM, ILAST-1 ), 1, C, S )
CALL CROT( ILAST-IFRSTM, T( IFRSTM, ILAST ), 1,
$ T( IFRSTM, ILAST-1 ), 1, C, S )
IF( ILZ )
$ CALL CROT( N, Z( 1, ILAST ), 1, Z( 1, ILAST-1 ), 1, C, S )
*
* H(ILAST,ILAST-1)=0 -- Standardize B, set ALPHA and BETA
*
60 CONTINUE
ABSB = ABS( T( ILAST, ILAST ) )
IF( ABSB.GT.SAFMIN ) THEN
SIGNBC = CONJG( T( ILAST, ILAST ) / ABSB )
T( ILAST, ILAST ) = ABSB
IF( ILSCHR ) THEN
CALL CSCAL( ILAST-IFRSTM, SIGNBC, T( IFRSTM, ILAST ), 1 )
CALL CSCAL( ILAST+1-IFRSTM, SIGNBC, H( IFRSTM, ILAST ),
$ 1 )
ELSE
H( ILAST, ILAST ) = H( ILAST, ILAST )*SIGNBC
END IF
IF( ILZ )
$ CALL CSCAL( N, SIGNBC, Z( 1, ILAST ), 1 )
ELSE
T( ILAST, ILAST ) = CZERO
END IF
ALPHA( ILAST ) = H( ILAST, ILAST )
BETA( ILAST ) = T( ILAST, ILAST )
*
* Go to next block -- exit if finished.
*
ILAST = ILAST - 1
IF( ILAST.LT.ILO )
$ GO TO 190
*
* Reset counters
*
IITER = 0
ESHIFT = CZERO
IF( .NOT.ILSCHR ) THEN
ILASTM = ILAST
IF( IFRSTM.GT.ILAST )
$ IFRSTM = ILO
END IF
GO TO 160
*
* QZ step
*
* This iteration only involves rows/columns IFIRST:ILAST. We
* assume IFIRST < ILAST, and that the diagonal of B is non-zero.
*
70 CONTINUE
IITER = IITER + 1
IF( .NOT.ILSCHR ) THEN
IFRSTM = IFIRST
END IF
*
* Compute the Shift.
*
* At this point, IFIRST < ILAST, and the diagonal elements of
* T(IFIRST:ILAST,IFIRST,ILAST) are larger than BTOL (in
* magnitude)
*
IF( ( IITER / 10 )*10.NE.IITER ) THEN
*
* The Wilkinson shift (AEP p.512), i.e., the eigenvalue of
* the bottom-right 2x2 block of A inv(B) which is nearest to
* the bottom-right element.
*
* We factor B as U*D, where U has unit diagonals, and
* compute (A*inv(D))*inv(U).
*
U12 = ( BSCALE*T( ILAST-1, ILAST ) ) /
$ ( BSCALE*T( ILAST, ILAST ) )
AD11 = ( ASCALE*H( ILAST-1, ILAST-1 ) ) /
$ ( BSCALE*T( ILAST-1, ILAST-1 ) )
AD21 = ( ASCALE*H( ILAST, ILAST-1 ) ) /
$ ( BSCALE*T( ILAST-1, ILAST-1 ) )
AD12 = ( ASCALE*H( ILAST-1, ILAST ) ) /
$ ( BSCALE*T( ILAST, ILAST ) )
AD22 = ( ASCALE*H( ILAST, ILAST ) ) /
$ ( BSCALE*T( ILAST, ILAST ) )
ABI22 = AD22 - U12*AD21
*
T1 = HALF*( AD11+ABI22 )
RTDISC = SQRT( T1**2+AD12*AD21-AD11*AD22 )
TEMP = REAL( T1-ABI22 )*REAL( RTDISC ) +
$ AIMAG( T1-ABI22 )*AIMAG( RTDISC )
IF( TEMP.LE.ZERO ) THEN
SHIFT = T1 + RTDISC
ELSE
SHIFT = T1 - RTDISC
END IF
ELSE
*
* Exceptional shift. Chosen for no particularly good reason.
*
ESHIFT = ESHIFT + CONJG( ( ASCALE*H( ILAST-1, ILAST ) ) /
$ ( BSCALE*T( ILAST-1, ILAST-1 ) ) )
SHIFT = ESHIFT
END IF
*
* Now check for two consecutive small subdiagonals.
*
DO 80 J = ILAST - 1, IFIRST + 1, -1
ISTART = J
CTEMP = ASCALE*H( J, J ) - SHIFT*( BSCALE*T( J, J ) )
TEMP = ABS1( CTEMP )
TEMP2 = ASCALE*ABS1( H( J+1, J ) )
TEMPR = MAX( TEMP, TEMP2 )
IF( TEMPR.LT.ONE .AND. TEMPR.NE.ZERO ) THEN
TEMP = TEMP / TEMPR
TEMP2 = TEMP2 / TEMPR
END IF
IF( ABS1( H( J, J-1 ) )*TEMP2.LE.TEMP*ATOL )
$ GO TO 90
80 CONTINUE
*
ISTART = IFIRST
CTEMP = ASCALE*H( IFIRST, IFIRST ) -
$ SHIFT*( BSCALE*T( IFIRST, IFIRST ) )
90 CONTINUE
*
* Do an implicit-shift QZ sweep.
*
* Initial Q
*
CTEMP2 = ASCALE*H( ISTART+1, ISTART )
CALL CLARTG( CTEMP, CTEMP2, C, S, CTEMP3 )
*
* Sweep
*
DO 150 J = ISTART, ILAST - 1
IF( J.GT.ISTART ) THEN
CTEMP = H( J, J-1 )
CALL CLARTG( CTEMP, H( J+1, J-1 ), C, S, H( J, J-1 ) )
H( J+1, J-1 ) = CZERO
END IF
*
DO 100 JC = J, ILASTM
CTEMP = C*H( J, JC ) + S*H( J+1, JC )
H( J+1, JC ) = -CONJG( S )*H( J, JC ) + C*H( J+1, JC )
H( J, JC ) = CTEMP
CTEMP2 = C*T( J, JC ) + S*T( J+1, JC )
T( J+1, JC ) = -CONJG( S )*T( J, JC ) + C*T( J+1, JC )
T( J, JC ) = CTEMP2
100 CONTINUE
IF( ILQ ) THEN
DO 110 JR = 1, N
CTEMP = C*Q( JR, J ) + CONJG( S )*Q( JR, J+1 )
Q( JR, J+1 ) = -S*Q( JR, J ) + C*Q( JR, J+1 )
Q( JR, J ) = CTEMP
110 CONTINUE
END IF
*
CTEMP = T( J+1, J+1 )
CALL CLARTG( CTEMP, T( J+1, J ), C, S, T( J+1, J+1 ) )
T( J+1, J ) = CZERO
*
DO 120 JR = IFRSTM, MIN( J+2, ILAST )
CTEMP = C*H( JR, J+1 ) + S*H( JR, J )
H( JR, J ) = -CONJG( S )*H( JR, J+1 ) + C*H( JR, J )
H( JR, J+1 ) = CTEMP
120 CONTINUE
DO 130 JR = IFRSTM, J
CTEMP = C*T( JR, J+1 ) + S*T( JR, J )
T( JR, J ) = -CONJG( S )*T( JR, J+1 ) + C*T( JR, J )
T( JR, J+1 ) = CTEMP
130 CONTINUE
IF( ILZ ) THEN
DO 140 JR = 1, N
CTEMP = C*Z( JR, J+1 ) + S*Z( JR, J )
Z( JR, J ) = -CONJG( S )*Z( JR, J+1 ) + C*Z( JR, J )
Z( JR, J+1 ) = CTEMP
140 CONTINUE
END IF
150 CONTINUE
*
160 CONTINUE
*
170 CONTINUE
*
* Drop-through = non-convergence
*
180 CONTINUE
INFO = ILAST
GO TO 210
*
* Successful completion of all QZ steps
*
190 CONTINUE
*
* Set Eigenvalues 1:ILO-1
*
DO 200 J = 1, ILO - 1
ABSB = ABS( T( J, J ) )
IF( ABSB.GT.SAFMIN ) THEN
SIGNBC = CONJG( T( J, J ) / ABSB )
T( J, J ) = ABSB
IF( ILSCHR ) THEN
CALL CSCAL( J-1, SIGNBC, T( 1, J ), 1 )
CALL CSCAL( J, SIGNBC, H( 1, J ), 1 )
ELSE
H( J, J ) = H( J, J )*SIGNBC
END IF
IF( ILZ )
$ CALL CSCAL( N, SIGNBC, Z( 1, J ), 1 )
ELSE
T( J, J ) = CZERO
END IF
ALPHA( J ) = H( J, J )
BETA( J ) = T( J, J )
200 CONTINUE
*
* Normal Termination
*
INFO = 0
*
* Exit (other than argument error) -- return optimal workspace size
*
210 CONTINUE
WORK( 1 ) = CMPLX( N )
RETURN
*
* End of CHGEQZ
*
END
|