1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
|
SUBROUTINE CHEGV( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
$ LWORK, RWORK, INFO )
*
* -- LAPACK driver routine (version 3.3.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* -- April 2011 --
*
* .. Scalar Arguments ..
CHARACTER JOBZ, UPLO
INTEGER INFO, ITYPE, LDA, LDB, LWORK, N
* ..
* .. Array Arguments ..
REAL RWORK( * ), W( * )
COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
* ..
*
* Purpose
* =======
*
* CHEGV computes all the eigenvalues, and optionally, the eigenvectors
* of a complex generalized Hermitian-definite eigenproblem, of the form
* A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
* Here A and B are assumed to be Hermitian and B is also
* positive definite.
*
* Arguments
* =========
*
* ITYPE (input) INTEGER
* Specifies the problem type to be solved:
* = 1: A*x = (lambda)*B*x
* = 2: A*B*x = (lambda)*x
* = 3: B*A*x = (lambda)*x
*
* JOBZ (input) CHARACTER*1
* = 'N': Compute eigenvalues only;
* = 'V': Compute eigenvalues and eigenvectors.
*
* UPLO (input) CHARACTER*1
* = 'U': Upper triangles of A and B are stored;
* = 'L': Lower triangles of A and B are stored.
*
* N (input) INTEGER
* The order of the matrices A and B. N >= 0.
*
* A (input/output) COMPLEX array, dimension (LDA, N)
* On entry, the Hermitian matrix A. If UPLO = 'U', the
* leading N-by-N upper triangular part of A contains the
* upper triangular part of the matrix A. If UPLO = 'L',
* the leading N-by-N lower triangular part of A contains
* the lower triangular part of the matrix A.
*
* On exit, if JOBZ = 'V', then if INFO = 0, A contains the
* matrix Z of eigenvectors. The eigenvectors are normalized
* as follows:
* if ITYPE = 1 or 2, Z**H*B*Z = I;
* if ITYPE = 3, Z**H*inv(B)*Z = I.
* If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
* or the lower triangle (if UPLO='L') of A, including the
* diagonal, is destroyed.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* B (input/output) COMPLEX array, dimension (LDB, N)
* On entry, the Hermitian positive definite matrix B.
* If UPLO = 'U', the leading N-by-N upper triangular part of B
* contains the upper triangular part of the matrix B.
* If UPLO = 'L', the leading N-by-N lower triangular part of B
* contains the lower triangular part of the matrix B.
*
* On exit, if INFO <= N, the part of B containing the matrix is
* overwritten by the triangular factor U or L from the Cholesky
* factorization B = U**H*U or B = L*L**H.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,N).
*
* W (output) REAL array, dimension (N)
* If INFO = 0, the eigenvalues in ascending order.
*
* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The length of the array WORK. LWORK >= max(1,2*N-1).
* For optimal efficiency, LWORK >= (NB+1)*N,
* where NB is the blocksize for CHETRD returned by ILAENV.
*
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the optimal size of the WORK array, returns
* this value as the first entry of the WORK array, and no error
* message related to LWORK is issued by XERBLA.
*
* RWORK (workspace) REAL array, dimension (max(1, 3*N-2))
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: CPOTRF or CHEEV returned an error code:
* <= N: if INFO = i, CHEEV failed to converge;
* i off-diagonal elements of an intermediate
* tridiagonal form did not converge to zero;
* > N: if INFO = N + i, for 1 <= i <= N, then the leading
* minor of order i of B is not positive definite.
* The factorization of B could not be completed and
* no eigenvalues or eigenvectors were computed.
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ONE
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
LOGICAL LQUERY, UPPER, WANTZ
CHARACTER TRANS
INTEGER LWKOPT, NB, NEIG
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
EXTERNAL ILAENV, LSAME
* ..
* .. External Subroutines ..
EXTERNAL CHEEV, CHEGST, CPOTRF, CTRMM, CTRSM, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
WANTZ = LSAME( JOBZ, 'V' )
UPPER = LSAME( UPLO, 'U' )
LQUERY = ( LWORK.EQ. -1 )
*
INFO = 0
IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
INFO = -1
ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
INFO = -2
ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -8
END IF
*
IF( INFO.EQ.0 ) THEN
NB = ILAENV( 1, 'CHETRD', UPLO, N, -1, -1, -1 )
LWKOPT = MAX( 1, ( NB + 1 )*N )
WORK( 1 ) = LWKOPT
*
IF( LWORK.LT.MAX( 1, 2*N-1 ) .AND. .NOT.LQUERY ) THEN
INFO = -11
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CHEGV ', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Form a Cholesky factorization of B.
*
CALL CPOTRF( UPLO, N, B, LDB, INFO )
IF( INFO.NE.0 ) THEN
INFO = N + INFO
RETURN
END IF
*
* Transform problem to standard eigenvalue problem and solve.
*
CALL CHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
CALL CHEEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, INFO )
*
IF( WANTZ ) THEN
*
* Backtransform eigenvectors to the original problem.
*
NEIG = N
IF( INFO.GT.0 )
$ NEIG = INFO - 1
IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
*
* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
* backtransform eigenvectors: x = inv(L)**H*y or inv(U)*y
*
IF( UPPER ) THEN
TRANS = 'N'
ELSE
TRANS = 'C'
END IF
*
CALL CTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
$ B, LDB, A, LDA )
*
ELSE IF( ITYPE.EQ.3 ) THEN
*
* For B*A*x=(lambda)*x;
* backtransform eigenvectors: x = L*y or U**H*y
*
IF( UPPER ) THEN
TRANS = 'C'
ELSE
TRANS = 'N'
END IF
*
CALL CTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
$ B, LDB, A, LDA )
END IF
END IF
*
WORK( 1 ) = LWKOPT
*
RETURN
*
* End of CHEGV
*
END
|