1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
|
*> \brief <b> CHEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices</b>
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CHEEV + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cheev.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cheev.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cheev.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CHEEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK,
* INFO )
*
* .. Scalar Arguments ..
* CHARACTER JOBZ, UPLO
* INTEGER INFO, LDA, LWORK, N
* ..
* .. Array Arguments ..
* REAL RWORK( * ), W( * )
* COMPLEX A( LDA, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CHEEV computes all eigenvalues and, optionally, eigenvectors of a
*> complex Hermitian matrix A.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] JOBZ
*> \verbatim
*> JOBZ is CHARACTER*1
*> = 'N': Compute eigenvalues only;
*> = 'V': Compute eigenvalues and eigenvectors.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': Upper triangle of A is stored;
*> = 'L': Lower triangle of A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA, N)
*> On entry, the Hermitian matrix A. If UPLO = 'U', the
*> leading N-by-N upper triangular part of A contains the
*> upper triangular part of the matrix A. If UPLO = 'L',
*> the leading N-by-N lower triangular part of A contains
*> the lower triangular part of the matrix A.
*> On exit, if JOBZ = 'V', then if INFO = 0, A contains the
*> orthonormal eigenvectors of the matrix A.
*> If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
*> or the upper triangle (if UPLO='U') of A, including the
*> diagonal, is destroyed.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] W
*> \verbatim
*> W is REAL array, dimension (N)
*> If INFO = 0, the eigenvalues in ascending order.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The length of the array WORK. LWORK >= max(1,2*N-1).
*> For optimal efficiency, LWORK >= (NB+1)*N,
*> where NB is the blocksize for CHETRD returned by ILAENV.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (max(1, 3*N-2))
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> > 0: if INFO = i, the algorithm failed to converge; i
*> off-diagonal elements of an intermediate tridiagonal
*> form did not converge to zero.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complexHEeigen
*
* =====================================================================
SUBROUTINE CHEEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK,
$ INFO )
*
* -- LAPACK driver routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER JOBZ, UPLO
INTEGER INFO, LDA, LWORK, N
* ..
* .. Array Arguments ..
REAL RWORK( * ), W( * )
COMPLEX A( LDA, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
COMPLEX CONE
PARAMETER ( CONE = ( 1.0E0, 0.0E0 ) )
* ..
* .. Local Scalars ..
LOGICAL LOWER, LQUERY, WANTZ
INTEGER IINFO, IMAX, INDE, INDTAU, INDWRK, ISCALE,
$ LLWORK, LWKOPT, NB
REAL ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
$ SMLNUM
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
REAL CLANHE, SLAMCH
EXTERNAL ILAENV, LSAME, CLANHE, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL CHETRD, CLASCL, CSTEQR, CUNGTR, SSCAL, SSTERF,
$ XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, SQRT
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
WANTZ = LSAME( JOBZ, 'V' )
LOWER = LSAME( UPLO, 'L' )
LQUERY = ( LWORK.EQ.-1 )
*
INFO = 0
IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
INFO = -1
ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
END IF
*
IF( INFO.EQ.0 ) THEN
NB = ILAENV( 1, 'CHETRD', UPLO, N, -1, -1, -1 )
LWKOPT = MAX( 1, ( NB+1 )*N )
WORK( 1 ) = LWKOPT
*
IF( LWORK.LT.MAX( 1, 2*N-1 ) .AND. .NOT.LQUERY )
$ INFO = -8
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CHEEV ', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 ) THEN
RETURN
END IF
*
IF( N.EQ.1 ) THEN
W( 1 ) = A( 1, 1 )
WORK( 1 ) = 1
IF( WANTZ )
$ A( 1, 1 ) = CONE
RETURN
END IF
*
* Get machine constants.
*
SAFMIN = SLAMCH( 'Safe minimum' )
EPS = SLAMCH( 'Precision' )
SMLNUM = SAFMIN / EPS
BIGNUM = ONE / SMLNUM
RMIN = SQRT( SMLNUM )
RMAX = SQRT( BIGNUM )
*
* Scale matrix to allowable range, if necessary.
*
ANRM = CLANHE( 'M', UPLO, N, A, LDA, RWORK )
ISCALE = 0
IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
ISCALE = 1
SIGMA = RMIN / ANRM
ELSE IF( ANRM.GT.RMAX ) THEN
ISCALE = 1
SIGMA = RMAX / ANRM
END IF
IF( ISCALE.EQ.1 )
$ CALL CLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
*
* Call CHETRD to reduce Hermitian matrix to tridiagonal form.
*
INDE = 1
INDTAU = 1
INDWRK = INDTAU + N
LLWORK = LWORK - INDWRK + 1
CALL CHETRD( UPLO, N, A, LDA, W, RWORK( INDE ), WORK( INDTAU ),
$ WORK( INDWRK ), LLWORK, IINFO )
*
* For eigenvalues only, call SSTERF. For eigenvectors, first call
* CUNGTR to generate the unitary matrix, then call CSTEQR.
*
IF( .NOT.WANTZ ) THEN
CALL SSTERF( N, W, RWORK( INDE ), INFO )
ELSE
CALL CUNGTR( UPLO, N, A, LDA, WORK( INDTAU ), WORK( INDWRK ),
$ LLWORK, IINFO )
INDWRK = INDE + N
CALL CSTEQR( JOBZ, N, W, RWORK( INDE ), A, LDA,
$ RWORK( INDWRK ), INFO )
END IF
*
* If matrix was scaled, then rescale eigenvalues appropriately.
*
IF( ISCALE.EQ.1 ) THEN
IF( INFO.EQ.0 ) THEN
IMAX = N
ELSE
IMAX = INFO - 1
END IF
CALL SSCAL( IMAX, ONE / SIGMA, W, 1 )
END IF
*
* Set WORK(1) to optimal complex workspace size.
*
WORK( 1 ) = LWKOPT
*
RETURN
*
* End of CHEEV
*
END
|