1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
|
*> \brief \b CHBGST
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CHBGVX + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chbgvx.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chbgvx.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chbgvx.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CHBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
* LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z,
* LDZ, WORK, RWORK, IWORK, IFAIL, INFO )
*
* .. Scalar Arguments ..
* CHARACTER JOBZ, RANGE, UPLO
* INTEGER IL, INFO, IU, KA, KB, LDAB, LDBB, LDQ, LDZ, M,
* $ N
* REAL ABSTOL, VL, VU
* ..
* .. Array Arguments ..
* INTEGER IFAIL( * ), IWORK( * )
* REAL RWORK( * ), W( * )
* COMPLEX AB( LDAB, * ), BB( LDBB, * ), Q( LDQ, * ),
* $ WORK( * ), Z( LDZ, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CHBGVX computes all the eigenvalues, and optionally, the eigenvectors
*> of a complex generalized Hermitian-definite banded eigenproblem, of
*> the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian
*> and banded, and B is also positive definite. Eigenvalues and
*> eigenvectors can be selected by specifying either all eigenvalues,
*> a range of values or a range of indices for the desired eigenvalues.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] JOBZ
*> \verbatim
*> JOBZ is CHARACTER*1
*> = 'N': Compute eigenvalues only;
*> = 'V': Compute eigenvalues and eigenvectors.
*> \endverbatim
*>
*> \param[in] RANGE
*> \verbatim
*> RANGE is CHARACTER*1
*> = 'A': all eigenvalues will be found;
*> = 'V': all eigenvalues in the half-open interval (VL,VU]
*> will be found;
*> = 'I': the IL-th through IU-th eigenvalues will be found.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': Upper triangles of A and B are stored;
*> = 'L': Lower triangles of A and B are stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrices A and B. N >= 0.
*> \endverbatim
*>
*> \param[in] KA
*> \verbatim
*> KA is INTEGER
*> The number of superdiagonals of the matrix A if UPLO = 'U',
*> or the number of subdiagonals if UPLO = 'L'. KA >= 0.
*> \endverbatim
*>
*> \param[in] KB
*> \verbatim
*> KB is INTEGER
*> The number of superdiagonals of the matrix B if UPLO = 'U',
*> or the number of subdiagonals if UPLO = 'L'. KB >= 0.
*> \endverbatim
*>
*> \param[in,out] AB
*> \verbatim
*> AB is COMPLEX array, dimension (LDAB, N)
*> On entry, the upper or lower triangle of the Hermitian band
*> matrix A, stored in the first ka+1 rows of the array. The
*> j-th column of A is stored in the j-th column of the array AB
*> as follows:
*> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
*>
*> On exit, the contents of AB are destroyed.
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*> LDAB is INTEGER
*> The leading dimension of the array AB. LDAB >= KA+1.
*> \endverbatim
*>
*> \param[in,out] BB
*> \verbatim
*> BB is COMPLEX array, dimension (LDBB, N)
*> On entry, the upper or lower triangle of the Hermitian band
*> matrix B, stored in the first kb+1 rows of the array. The
*> j-th column of B is stored in the j-th column of the array BB
*> as follows:
*> if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
*> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
*>
*> On exit, the factor S from the split Cholesky factorization
*> B = S**H*S, as returned by CPBSTF.
*> \endverbatim
*>
*> \param[in] LDBB
*> \verbatim
*> LDBB is INTEGER
*> The leading dimension of the array BB. LDBB >= KB+1.
*> \endverbatim
*>
*> \param[out] Q
*> \verbatim
*> Q is COMPLEX array, dimension (LDQ, N)
*> If JOBZ = 'V', the n-by-n matrix used in the reduction of
*> A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x,
*> and consequently C to tridiagonal form.
*> If JOBZ = 'N', the array Q is not referenced.
*> \endverbatim
*>
*> \param[in] LDQ
*> \verbatim
*> LDQ is INTEGER
*> The leading dimension of the array Q. If JOBZ = 'N',
*> LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N).
*> \endverbatim
*>
*> \param[in] VL
*> \verbatim
*> VL is REAL
*> \endverbatim
*>
*> \param[in] VU
*> \verbatim
*> VU is REAL
*>
*> If RANGE='V', the lower and upper bounds of the interval to
*> be searched for eigenvalues. VL < VU.
*> Not referenced if RANGE = 'A' or 'I'.
*> \endverbatim
*>
*> \param[in] IL
*> \verbatim
*> IL is INTEGER
*> \endverbatim
*>
*> \param[in] IU
*> \verbatim
*> IU is INTEGER
*>
*> If RANGE='I', the indices (in ascending order) of the
*> smallest and largest eigenvalues to be returned.
*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
*> Not referenced if RANGE = 'A' or 'V'.
*> \endverbatim
*>
*> \param[in] ABSTOL
*> \verbatim
*> ABSTOL is REAL
*> The absolute error tolerance for the eigenvalues.
*> An approximate eigenvalue is accepted as converged
*> when it is determined to lie in an interval [a,b]
*> of width less than or equal to
*>
*> ABSTOL + EPS * max( |a|,|b| ) ,
*>
*> where EPS is the machine precision. If ABSTOL is less than
*> or equal to zero, then EPS*|T| will be used in its place,
*> where |T| is the 1-norm of the tridiagonal matrix obtained
*> by reducing AP to tridiagonal form.
*>
*> Eigenvalues will be computed most accurately when ABSTOL is
*> set to twice the underflow threshold 2*SLAMCH('S'), not zero.
*> If this routine returns with INFO>0, indicating that some
*> eigenvectors did not converge, try setting ABSTOL to
*> 2*SLAMCH('S').
*> \endverbatim
*>
*> \param[out] M
*> \verbatim
*> M is INTEGER
*> The total number of eigenvalues found. 0 <= M <= N.
*> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
*> \endverbatim
*>
*> \param[out] W
*> \verbatim
*> W is REAL array, dimension (N)
*> If INFO = 0, the eigenvalues in ascending order.
*> \endverbatim
*>
*> \param[out] Z
*> \verbatim
*> Z is COMPLEX array, dimension (LDZ, N)
*> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
*> eigenvectors, with the i-th column of Z holding the
*> eigenvector associated with W(i). The eigenvectors are
*> normalized so that Z**H*B*Z = I.
*> If JOBZ = 'N', then Z is not referenced.
*> \endverbatim
*>
*> \param[in] LDZ
*> \verbatim
*> LDZ is INTEGER
*> The leading dimension of the array Z. LDZ >= 1, and if
*> JOBZ = 'V', LDZ >= N.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (N)
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (7*N)
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (5*N)
*> \endverbatim
*>
*> \param[out] IFAIL
*> \verbatim
*> IFAIL is INTEGER array, dimension (N)
*> If JOBZ = 'V', then if INFO = 0, the first M elements of
*> IFAIL are zero. If INFO > 0, then IFAIL contains the
*> indices of the eigenvectors that failed to converge.
*> If JOBZ = 'N', then IFAIL is not referenced.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> > 0: if INFO = i, and i is:
*> <= N: then i eigenvectors failed to converge. Their
*> indices are stored in array IFAIL.
*> > N: if INFO = N + i, for 1 <= i <= N, then CPBSTF
*> returned INFO = i: B is not positive definite.
*> The factorization of B could not be completed and
*> no eigenvalues or eigenvectors were computed.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complexOTHEReigen
*
*> \par Contributors:
* ==================
*>
*> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
*
* =====================================================================
SUBROUTINE CHBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
$ LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z,
$ LDZ, WORK, RWORK, IWORK, IFAIL, INFO )
*
* -- LAPACK driver routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER JOBZ, RANGE, UPLO
INTEGER IL, INFO, IU, KA, KB, LDAB, LDBB, LDQ, LDZ, M,
$ N
REAL ABSTOL, VL, VU
* ..
* .. Array Arguments ..
INTEGER IFAIL( * ), IWORK( * )
REAL RWORK( * ), W( * )
COMPLEX AB( LDAB, * ), BB( LDBB, * ), Q( LDQ, * ),
$ WORK( * ), Z( LDZ, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO
PARAMETER ( ZERO = 0.0E+0 )
COMPLEX CZERO, CONE
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
$ CONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
LOGICAL ALLEIG, INDEIG, TEST, UPPER, VALEIG, WANTZ
CHARACTER ORDER, VECT
INTEGER I, IINFO, INDD, INDE, INDEE, INDIBL, INDISP,
$ INDIWK, INDRWK, INDWRK, ITMP1, J, JJ, NSPLIT
REAL TMP1
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL CCOPY, CGEMV, CHBGST, CHBTRD, CLACPY, CPBSTF,
$ CSTEIN, CSTEQR, CSWAP, SCOPY, SSTEBZ, SSTERF,
$ XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MIN
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
WANTZ = LSAME( JOBZ, 'V' )
UPPER = LSAME( UPLO, 'U' )
ALLEIG = LSAME( RANGE, 'A' )
VALEIG = LSAME( RANGE, 'V' )
INDEIG = LSAME( RANGE, 'I' )
*
INFO = 0
IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
INFO = -1
ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
INFO = -2
ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( KA.LT.0 ) THEN
INFO = -5
ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
INFO = -6
ELSE IF( LDAB.LT.KA+1 ) THEN
INFO = -8
ELSE IF( LDBB.LT.KB+1 ) THEN
INFO = -10
ELSE IF( LDQ.LT.1 .OR. ( WANTZ .AND. LDQ.LT.N ) ) THEN
INFO = -12
ELSE
IF( VALEIG ) THEN
IF( N.GT.0 .AND. VU.LE.VL )
$ INFO = -14
ELSE IF( INDEIG ) THEN
IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
INFO = -15
ELSE IF ( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
INFO = -16
END IF
END IF
END IF
IF( INFO.EQ.0) THEN
IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
INFO = -21
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CHBGVX', -INFO )
RETURN
END IF
*
* Quick return if possible
*
M = 0
IF( N.EQ.0 )
$ RETURN
*
* Form a split Cholesky factorization of B.
*
CALL CPBSTF( UPLO, N, KB, BB, LDBB, INFO )
IF( INFO.NE.0 ) THEN
INFO = N + INFO
RETURN
END IF
*
* Transform problem to standard eigenvalue problem.
*
CALL CHBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Q, LDQ,
$ WORK, RWORK, IINFO )
*
* Solve the standard eigenvalue problem.
* Reduce Hermitian band matrix to tridiagonal form.
*
INDD = 1
INDE = INDD + N
INDRWK = INDE + N
INDWRK = 1
IF( WANTZ ) THEN
VECT = 'U'
ELSE
VECT = 'N'
END IF
CALL CHBTRD( VECT, UPLO, N, KA, AB, LDAB, RWORK( INDD ),
$ RWORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO )
*
* If all eigenvalues are desired and ABSTOL is less than or equal
* to zero, then call SSTERF or CSTEQR. If this fails for some
* eigenvalue, then try SSTEBZ.
*
TEST = .FALSE.
IF( INDEIG ) THEN
IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
TEST = .TRUE.
END IF
END IF
IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
CALL SCOPY( N, RWORK( INDD ), 1, W, 1 )
INDEE = INDRWK + 2*N
CALL SCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
IF( .NOT.WANTZ ) THEN
CALL SSTERF( N, W, RWORK( INDEE ), INFO )
ELSE
CALL CLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
CALL CSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
$ RWORK( INDRWK ), INFO )
IF( INFO.EQ.0 ) THEN
DO 10 I = 1, N
IFAIL( I ) = 0
10 CONTINUE
END IF
END IF
IF( INFO.EQ.0 ) THEN
M = N
GO TO 30
END IF
INFO = 0
END IF
*
* Otherwise, call SSTEBZ and, if eigenvectors are desired,
* call CSTEIN.
*
IF( WANTZ ) THEN
ORDER = 'B'
ELSE
ORDER = 'E'
END IF
INDIBL = 1
INDISP = INDIBL + N
INDIWK = INDISP + N
CALL SSTEBZ( RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL,
$ RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
$ IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
$ IWORK( INDIWK ), INFO )
*
IF( WANTZ ) THEN
CALL CSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
$ IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
$ RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
*
* Apply unitary matrix used in reduction to tridiagonal
* form to eigenvectors returned by CSTEIN.
*
DO 20 J = 1, M
CALL CCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
CALL CGEMV( 'N', N, N, CONE, Q, LDQ, WORK, 1, CZERO,
$ Z( 1, J ), 1 )
20 CONTINUE
END IF
*
30 CONTINUE
*
* If eigenvalues are not in order, then sort them, along with
* eigenvectors.
*
IF( WANTZ ) THEN
DO 50 J = 1, M - 1
I = 0
TMP1 = W( J )
DO 40 JJ = J + 1, M
IF( W( JJ ).LT.TMP1 ) THEN
I = JJ
TMP1 = W( JJ )
END IF
40 CONTINUE
*
IF( I.NE.0 ) THEN
ITMP1 = IWORK( INDIBL+I-1 )
W( I ) = W( J )
IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
W( J ) = TMP1
IWORK( INDIBL+J-1 ) = ITMP1
CALL CSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
IF( INFO.NE.0 ) THEN
ITMP1 = IFAIL( I )
IFAIL( I ) = IFAIL( J )
IFAIL( J ) = ITMP1
END IF
END IF
50 CONTINUE
END IF
*
RETURN
*
* End of CHBGVX
*
END
|