summaryrefslogtreecommitdiff
path: root/SRC/chbgst.f
blob: 537588a0511254245c9de2ced9adb8c0b674b5b9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
*> \brief \b CHBGST
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CHBGST + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chbgst.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chbgst.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chbgst.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE CHBGST( VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X,
*                          LDX, WORK, RWORK, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          UPLO, VECT
*       INTEGER            INFO, KA, KB, LDAB, LDBB, LDX, N
*       ..
*       .. Array Arguments ..
*       REAL               RWORK( * )
*       COMPLEX            AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
*      $                   X( LDX, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CHBGST reduces a complex Hermitian-definite banded generalized
*> eigenproblem  A*x = lambda*B*x  to standard form  C*y = lambda*y,
*> such that C has the same bandwidth as A.
*>
*> B must have been previously factorized as S**H*S by CPBSTF, using a
*> split Cholesky factorization. A is overwritten by C = X**H*A*X, where
*> X = S**(-1)*Q and Q is a unitary matrix chosen to preserve the
*> bandwidth of A.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] VECT
*> \verbatim
*>          VECT is CHARACTER*1
*>          = 'N':  do not form the transformation matrix X;
*>          = 'V':  form X.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          = 'U':  Upper triangle of A is stored;
*>          = 'L':  Lower triangle of A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrices A and B.  N >= 0.
*> \endverbatim
*>
*> \param[in] KA
*> \verbatim
*>          KA is INTEGER
*>          The number of superdiagonals of the matrix A if UPLO = 'U',
*>          or the number of subdiagonals if UPLO = 'L'.  KA >= 0.
*> \endverbatim
*>
*> \param[in] KB
*> \verbatim
*>          KB is INTEGER
*>          The number of superdiagonals of the matrix B if UPLO = 'U',
*>          or the number of subdiagonals if UPLO = 'L'.  KA >= KB >= 0.
*> \endverbatim
*>
*> \param[in,out] AB
*> \verbatim
*>          AB is COMPLEX array, dimension (LDAB,N)
*>          On entry, the upper or lower triangle of the Hermitian band
*>          matrix A, stored in the first ka+1 rows of the array.  The
*>          j-th column of A is stored in the j-th column of the array AB
*>          as follows:
*>          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
*>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
*>
*>          On exit, the transformed matrix X**H*A*X, stored in the same
*>          format as A.
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*>          LDAB is INTEGER
*>          The leading dimension of the array AB.  LDAB >= KA+1.
*> \endverbatim
*>
*> \param[in] BB
*> \verbatim
*>          BB is COMPLEX array, dimension (LDBB,N)
*>          The banded factor S from the split Cholesky factorization of
*>          B, as returned by CPBSTF, stored in the first kb+1 rows of
*>          the array.
*> \endverbatim
*>
*> \param[in] LDBB
*> \verbatim
*>          LDBB is INTEGER
*>          The leading dimension of the array BB.  LDBB >= KB+1.
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*>          X is COMPLEX array, dimension (LDX,N)
*>          If VECT = 'V', the n-by-n matrix X.
*>          If VECT = 'N', the array X is not referenced.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*>          LDX is INTEGER
*>          The leading dimension of the array X.
*>          LDX >= max(1,N) if VECT = 'V'; LDX >= 1 otherwise.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array, dimension (N)
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complexOTHERcomputational
*
*  =====================================================================
      SUBROUTINE CHBGST( VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X,
     $                   LDX, WORK, RWORK, INFO )
*
*  -- LAPACK computational routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO, VECT
      INTEGER            INFO, KA, KB, LDAB, LDBB, LDX, N
*     ..
*     .. Array Arguments ..
      REAL               RWORK( * )
      COMPLEX            AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
     $                   X( LDX, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            CZERO, CONE
      REAL               ONE
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
     $                   CONE = ( 1.0E+0, 0.0E+0 ), ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPDATE, UPPER, WANTX
      INTEGER            I, I0, I1, I2, INCA, J, J1, J1T, J2, J2T, K,
     $                   KA1, KB1, KBT, L, M, NR, NRT, NX
      REAL               BII
      COMPLEX            RA, RA1, T
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGERC, CGERU, CLACGV, CLAR2V, CLARGV, CLARTG,
     $                   CLARTV, CLASET, CROT, CSSCAL, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CONJG, MAX, MIN, REAL
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters
*
      WANTX = LSAME( VECT, 'V' )
      UPPER = LSAME( UPLO, 'U' )
      KA1 = KA + 1
      KB1 = KB + 1
      INFO = 0
      IF( .NOT.WANTX .AND. .NOT.LSAME( VECT, 'N' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( KA.LT.0 ) THEN
         INFO = -4
      ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
         INFO = -5
      ELSE IF( LDAB.LT.KA+1 ) THEN
         INFO = -7
      ELSE IF( LDBB.LT.KB+1 ) THEN
         INFO = -9
      ELSE IF( LDX.LT.1 .OR. WANTX .AND. LDX.LT.MAX( 1, N ) ) THEN
         INFO = -11
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CHBGST', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      INCA = LDAB*KA1
*
*     Initialize X to the unit matrix, if needed
*
      IF( WANTX )
     $   CALL CLASET( 'Full', N, N, CZERO, CONE, X, LDX )
*
*     Set M to the splitting point m. It must be the same value as is
*     used in CPBSTF. The chosen value allows the arrays WORK and RWORK
*     to be of dimension (N).
*
      M = ( N+KB ) / 2
*
*     The routine works in two phases, corresponding to the two halves
*     of the split Cholesky factorization of B as S**H*S where
*
*     S = ( U    )
*         ( M  L )
*
*     with U upper triangular of order m, and L lower triangular of
*     order n-m. S has the same bandwidth as B.
*
*     S is treated as a product of elementary matrices:
*
*     S = S(m)*S(m-1)*...*S(2)*S(1)*S(m+1)*S(m+2)*...*S(n-1)*S(n)
*
*     where S(i) is determined by the i-th row of S.
*
*     In phase 1, the index i takes the values n, n-1, ... , m+1;
*     in phase 2, it takes the values 1, 2, ... , m.
*
*     For each value of i, the current matrix A is updated by forming
*     inv(S(i))**H*A*inv(S(i)). This creates a triangular bulge outside
*     the band of A. The bulge is then pushed down toward the bottom of
*     A in phase 1, and up toward the top of A in phase 2, by applying
*     plane rotations.
*
*     There are kb*(kb+1)/2 elements in the bulge, but at most 2*kb-1
*     of them are linearly independent, so annihilating a bulge requires
*     only 2*kb-1 plane rotations. The rotations are divided into a 1st
*     set of kb-1 rotations, and a 2nd set of kb rotations.
*
*     Wherever possible, rotations are generated and applied in vector
*     operations of length NR between the indices J1 and J2 (sometimes
*     replaced by modified values NRT, J1T or J2T).
*
*     The real cosines and complex sines of the rotations are stored in
*     the arrays RWORK and WORK, those of the 1st set in elements
*     2:m-kb-1, and those of the 2nd set in elements m-kb+1:n.
*
*     The bulges are not formed explicitly; nonzero elements outside the
*     band are created only when they are required for generating new
*     rotations; they are stored in the array WORK, in positions where
*     they are later overwritten by the sines of the rotations which
*     annihilate them.
*
*     **************************** Phase 1 *****************************
*
*     The logical structure of this phase is:
*
*     UPDATE = .TRUE.
*     DO I = N, M + 1, -1
*        use S(i) to update A and create a new bulge
*        apply rotations to push all bulges KA positions downward
*     END DO
*     UPDATE = .FALSE.
*     DO I = M + KA + 1, N - 1
*        apply rotations to push all bulges KA positions downward
*     END DO
*
*     To avoid duplicating code, the two loops are merged.
*
      UPDATE = .TRUE.
      I = N + 1
   10 CONTINUE
      IF( UPDATE ) THEN
         I = I - 1
         KBT = MIN( KB, I-1 )
         I0 = I - 1
         I1 = MIN( N, I+KA )
         I2 = I - KBT + KA1
         IF( I.LT.M+1 ) THEN
            UPDATE = .FALSE.
            I = I + 1
            I0 = M
            IF( KA.EQ.0 )
     $         GO TO 480
            GO TO 10
         END IF
      ELSE
         I = I + KA
         IF( I.GT.N-1 )
     $      GO TO 480
      END IF
*
      IF( UPPER ) THEN
*
*        Transform A, working with the upper triangle
*
         IF( UPDATE ) THEN
*
*           Form  inv(S(i))**H * A * inv(S(i))
*
            BII = REAL( BB( KB1, I ) )
            AB( KA1, I ) = ( REAL( AB( KA1, I ) ) / BII ) / BII
            DO 20 J = I + 1, I1
               AB( I-J+KA1, J ) = AB( I-J+KA1, J ) / BII
   20       CONTINUE
            DO 30 J = MAX( 1, I-KA ), I - 1
               AB( J-I+KA1, I ) = AB( J-I+KA1, I ) / BII
   30       CONTINUE
            DO 60 K = I - KBT, I - 1
               DO 40 J = I - KBT, K
                  AB( J-K+KA1, K ) = AB( J-K+KA1, K ) -
     $                               BB( J-I+KB1, I )*
     $                               CONJG( AB( K-I+KA1, I ) ) -
     $                               CONJG( BB( K-I+KB1, I ) )*
     $                               AB( J-I+KA1, I ) +
     $                               REAL( AB( KA1, I ) )*
     $                               BB( J-I+KB1, I )*
     $                               CONJG( BB( K-I+KB1, I ) )
   40          CONTINUE
               DO 50 J = MAX( 1, I-KA ), I - KBT - 1
                  AB( J-K+KA1, K ) = AB( J-K+KA1, K ) -
     $                               CONJG( BB( K-I+KB1, I ) )*
     $                               AB( J-I+KA1, I )
   50          CONTINUE
   60       CONTINUE
            DO 80 J = I, I1
               DO 70 K = MAX( J-KA, I-KBT ), I - 1
                  AB( K-J+KA1, J ) = AB( K-J+KA1, J ) -
     $                               BB( K-I+KB1, I )*AB( I-J+KA1, J )
   70          CONTINUE
   80       CONTINUE
*
            IF( WANTX ) THEN
*
*              post-multiply X by inv(S(i))
*
               CALL CSSCAL( N-M, ONE / BII, X( M+1, I ), 1 )
               IF( KBT.GT.0 )
     $            CALL CGERC( N-M, KBT, -CONE, X( M+1, I ), 1,
     $                        BB( KB1-KBT, I ), 1, X( M+1, I-KBT ),
     $                        LDX )
            END IF
*
*           store a(i,i1) in RA1 for use in next loop over K
*
            RA1 = AB( I-I1+KA1, I1 )
         END IF
*
*        Generate and apply vectors of rotations to chase all the
*        existing bulges KA positions down toward the bottom of the
*        band
*
         DO 130 K = 1, KB - 1
            IF( UPDATE ) THEN
*
*              Determine the rotations which would annihilate the bulge
*              which has in theory just been created
*
               IF( I-K+KA.LT.N .AND. I-K.GT.1 ) THEN
*
*                 generate rotation to annihilate a(i,i-k+ka+1)
*
                  CALL CLARTG( AB( K+1, I-K+KA ), RA1,
     $                         RWORK( I-K+KA-M ), WORK( I-K+KA-M ), RA )
*
*                 create nonzero element a(i-k,i-k+ka+1) outside the
*                 band and store it in WORK(i-k)
*
                  T = -BB( KB1-K, I )*RA1
                  WORK( I-K ) = RWORK( I-K+KA-M )*T -
     $                          CONJG( WORK( I-K+KA-M ) )*
     $                          AB( 1, I-K+KA )
                  AB( 1, I-K+KA ) = WORK( I-K+KA-M )*T +
     $                              RWORK( I-K+KA-M )*AB( 1, I-K+KA )
                  RA1 = RA
               END IF
            END IF
            J2 = I - K - 1 + MAX( 1, K-I0+2 )*KA1
            NR = ( N-J2+KA ) / KA1
            J1 = J2 + ( NR-1 )*KA1
            IF( UPDATE ) THEN
               J2T = MAX( J2, I+2*KA-K+1 )
            ELSE
               J2T = J2
            END IF
            NRT = ( N-J2T+KA ) / KA1
            DO 90 J = J2T, J1, KA1
*
*              create nonzero element a(j-ka,j+1) outside the band
*              and store it in WORK(j-m)
*
               WORK( J-M ) = WORK( J-M )*AB( 1, J+1 )
               AB( 1, J+1 ) = RWORK( J-M )*AB( 1, J+1 )
   90       CONTINUE
*
*           generate rotations in 1st set to annihilate elements which
*           have been created outside the band
*
            IF( NRT.GT.0 )
     $         CALL CLARGV( NRT, AB( 1, J2T ), INCA, WORK( J2T-M ), KA1,
     $                      RWORK( J2T-M ), KA1 )
            IF( NR.GT.0 ) THEN
*
*              apply rotations in 1st set from the right
*
               DO 100 L = 1, KA - 1
                  CALL CLARTV( NR, AB( KA1-L, J2 ), INCA,
     $                         AB( KA-L, J2+1 ), INCA, RWORK( J2-M ),
     $                         WORK( J2-M ), KA1 )
  100          CONTINUE
*
*              apply rotations in 1st set from both sides to diagonal
*              blocks
*
               CALL CLAR2V( NR, AB( KA1, J2 ), AB( KA1, J2+1 ),
     $                      AB( KA, J2+1 ), INCA, RWORK( J2-M ),
     $                      WORK( J2-M ), KA1 )
*
               CALL CLACGV( NR, WORK( J2-M ), KA1 )
            END IF
*
*           start applying rotations in 1st set from the left
*
            DO 110 L = KA - 1, KB - K + 1, -1
               NRT = ( N-J2+L ) / KA1
               IF( NRT.GT.0 )
     $            CALL CLARTV( NRT, AB( L, J2+KA1-L ), INCA,
     $                         AB( L+1, J2+KA1-L ), INCA, RWORK( J2-M ),
     $                         WORK( J2-M ), KA1 )
  110       CONTINUE
*
            IF( WANTX ) THEN
*
*              post-multiply X by product of rotations in 1st set
*
               DO 120 J = J2, J1, KA1
                  CALL CROT( N-M, X( M+1, J ), 1, X( M+1, J+1 ), 1,
     $                       RWORK( J-M ), CONJG( WORK( J-M ) ) )
  120          CONTINUE
            END IF
  130    CONTINUE
*
         IF( UPDATE ) THEN
            IF( I2.LE.N .AND. KBT.GT.0 ) THEN
*
*              create nonzero element a(i-kbt,i-kbt+ka+1) outside the
*              band and store it in WORK(i-kbt)
*
               WORK( I-KBT ) = -BB( KB1-KBT, I )*RA1
            END IF
         END IF
*
         DO 170 K = KB, 1, -1
            IF( UPDATE ) THEN
               J2 = I - K - 1 + MAX( 2, K-I0+1 )*KA1
            ELSE
               J2 = I - K - 1 + MAX( 1, K-I0+1 )*KA1
            END IF
*
*           finish applying rotations in 2nd set from the left
*
            DO 140 L = KB - K, 1, -1
               NRT = ( N-J2+KA+L ) / KA1
               IF( NRT.GT.0 )
     $            CALL CLARTV( NRT, AB( L, J2-L+1 ), INCA,
     $                         AB( L+1, J2-L+1 ), INCA, RWORK( J2-KA ),
     $                         WORK( J2-KA ), KA1 )
  140       CONTINUE
            NR = ( N-J2+KA ) / KA1
            J1 = J2 + ( NR-1 )*KA1
            DO 150 J = J1, J2, -KA1
               WORK( J ) = WORK( J-KA )
               RWORK( J ) = RWORK( J-KA )
  150       CONTINUE
            DO 160 J = J2, J1, KA1
*
*              create nonzero element a(j-ka,j+1) outside the band
*              and store it in WORK(j)
*
               WORK( J ) = WORK( J )*AB( 1, J+1 )
               AB( 1, J+1 ) = RWORK( J )*AB( 1, J+1 )
  160       CONTINUE
            IF( UPDATE ) THEN
               IF( I-K.LT.N-KA .AND. K.LE.KBT )
     $            WORK( I-K+KA ) = WORK( I-K )
            END IF
  170    CONTINUE
*
         DO 210 K = KB, 1, -1
            J2 = I - K - 1 + MAX( 1, K-I0+1 )*KA1
            NR = ( N-J2+KA ) / KA1
            J1 = J2 + ( NR-1 )*KA1
            IF( NR.GT.0 ) THEN
*
*              generate rotations in 2nd set to annihilate elements
*              which have been created outside the band
*
               CALL CLARGV( NR, AB( 1, J2 ), INCA, WORK( J2 ), KA1,
     $                      RWORK( J2 ), KA1 )
*
*              apply rotations in 2nd set from the right
*
               DO 180 L = 1, KA - 1
                  CALL CLARTV( NR, AB( KA1-L, J2 ), INCA,
     $                         AB( KA-L, J2+1 ), INCA, RWORK( J2 ),
     $                         WORK( J2 ), KA1 )
  180          CONTINUE
*
*              apply rotations in 2nd set from both sides to diagonal
*              blocks
*
               CALL CLAR2V( NR, AB( KA1, J2 ), AB( KA1, J2+1 ),
     $                      AB( KA, J2+1 ), INCA, RWORK( J2 ),
     $                      WORK( J2 ), KA1 )
*
               CALL CLACGV( NR, WORK( J2 ), KA1 )
            END IF
*
*           start applying rotations in 2nd set from the left
*
            DO 190 L = KA - 1, KB - K + 1, -1
               NRT = ( N-J2+L ) / KA1
               IF( NRT.GT.0 )
     $            CALL CLARTV( NRT, AB( L, J2+KA1-L ), INCA,
     $                         AB( L+1, J2+KA1-L ), INCA, RWORK( J2 ),
     $                         WORK( J2 ), KA1 )
  190       CONTINUE
*
            IF( WANTX ) THEN
*
*              post-multiply X by product of rotations in 2nd set
*
               DO 200 J = J2, J1, KA1
                  CALL CROT( N-M, X( M+1, J ), 1, X( M+1, J+1 ), 1,
     $                       RWORK( J ), CONJG( WORK( J ) ) )
  200          CONTINUE
            END IF
  210    CONTINUE
*
         DO 230 K = 1, KB - 1
            J2 = I - K - 1 + MAX( 1, K-I0+2 )*KA1
*
*           finish applying rotations in 1st set from the left
*
            DO 220 L = KB - K, 1, -1
               NRT = ( N-J2+L ) / KA1
               IF( NRT.GT.0 )
     $            CALL CLARTV( NRT, AB( L, J2+KA1-L ), INCA,
     $                         AB( L+1, J2+KA1-L ), INCA, RWORK( J2-M ),
     $                         WORK( J2-M ), KA1 )
  220       CONTINUE
  230    CONTINUE
*
         IF( KB.GT.1 ) THEN
            DO 240 J = N - 1, J2 + KA, -1
               RWORK( J-M ) = RWORK( J-KA-M )
               WORK( J-M ) = WORK( J-KA-M )
  240       CONTINUE
         END IF
*
      ELSE
*
*        Transform A, working with the lower triangle
*
         IF( UPDATE ) THEN
*
*           Form  inv(S(i))**H * A * inv(S(i))
*
            BII = REAL( BB( 1, I ) )
            AB( 1, I ) = ( REAL( AB( 1, I ) ) / BII ) / BII
            DO 250 J = I + 1, I1
               AB( J-I+1, I ) = AB( J-I+1, I ) / BII
  250       CONTINUE
            DO 260 J = MAX( 1, I-KA ), I - 1
               AB( I-J+1, J ) = AB( I-J+1, J ) / BII
  260       CONTINUE
            DO 290 K = I - KBT, I - 1
               DO 270 J = I - KBT, K
                  AB( K-J+1, J ) = AB( K-J+1, J ) -
     $                             BB( I-J+1, J )*CONJG( AB( I-K+1,
     $                             K ) ) - CONJG( BB( I-K+1, K ) )*
     $                             AB( I-J+1, J ) + REAL( AB( 1, I ) )*
     $                             BB( I-J+1, J )*CONJG( BB( I-K+1,
     $                             K ) )
  270          CONTINUE
               DO 280 J = MAX( 1, I-KA ), I - KBT - 1
                  AB( K-J+1, J ) = AB( K-J+1, J ) -
     $                             CONJG( BB( I-K+1, K ) )*
     $                             AB( I-J+1, J )
  280          CONTINUE
  290       CONTINUE
            DO 310 J = I, I1
               DO 300 K = MAX( J-KA, I-KBT ), I - 1
                  AB( J-K+1, K ) = AB( J-K+1, K ) -
     $                             BB( I-K+1, K )*AB( J-I+1, I )
  300          CONTINUE
  310       CONTINUE
*
            IF( WANTX ) THEN
*
*              post-multiply X by inv(S(i))
*
               CALL CSSCAL( N-M, ONE / BII, X( M+1, I ), 1 )
               IF( KBT.GT.0 )
     $            CALL CGERU( N-M, KBT, -CONE, X( M+1, I ), 1,
     $                        BB( KBT+1, I-KBT ), LDBB-1,
     $                        X( M+1, I-KBT ), LDX )
            END IF
*
*           store a(i1,i) in RA1 for use in next loop over K
*
            RA1 = AB( I1-I+1, I )
         END IF
*
*        Generate and apply vectors of rotations to chase all the
*        existing bulges KA positions down toward the bottom of the
*        band
*
         DO 360 K = 1, KB - 1
            IF( UPDATE ) THEN
*
*              Determine the rotations which would annihilate the bulge
*              which has in theory just been created
*
               IF( I-K+KA.LT.N .AND. I-K.GT.1 ) THEN
*
*                 generate rotation to annihilate a(i-k+ka+1,i)
*
                  CALL CLARTG( AB( KA1-K, I ), RA1, RWORK( I-K+KA-M ),
     $                         WORK( I-K+KA-M ), RA )
*
*                 create nonzero element a(i-k+ka+1,i-k) outside the
*                 band and store it in WORK(i-k)
*
                  T = -BB( K+1, I-K )*RA1
                  WORK( I-K ) = RWORK( I-K+KA-M )*T -
     $                          CONJG( WORK( I-K+KA-M ) )*AB( KA1, I-K )
                  AB( KA1, I-K ) = WORK( I-K+KA-M )*T +
     $                             RWORK( I-K+KA-M )*AB( KA1, I-K )
                  RA1 = RA
               END IF
            END IF
            J2 = I - K - 1 + MAX( 1, K-I0+2 )*KA1
            NR = ( N-J2+KA ) / KA1
            J1 = J2 + ( NR-1 )*KA1
            IF( UPDATE ) THEN
               J2T = MAX( J2, I+2*KA-K+1 )
            ELSE
               J2T = J2
            END IF
            NRT = ( N-J2T+KA ) / KA1
            DO 320 J = J2T, J1, KA1
*
*              create nonzero element a(j+1,j-ka) outside the band
*              and store it in WORK(j-m)
*
               WORK( J-M ) = WORK( J-M )*AB( KA1, J-KA+1 )
               AB( KA1, J-KA+1 ) = RWORK( J-M )*AB( KA1, J-KA+1 )
  320       CONTINUE
*
*           generate rotations in 1st set to annihilate elements which
*           have been created outside the band
*
            IF( NRT.GT.0 )
     $         CALL CLARGV( NRT, AB( KA1, J2T-KA ), INCA, WORK( J2T-M ),
     $                      KA1, RWORK( J2T-M ), KA1 )
            IF( NR.GT.0 ) THEN
*
*              apply rotations in 1st set from the left
*
               DO 330 L = 1, KA - 1
                  CALL CLARTV( NR, AB( L+1, J2-L ), INCA,
     $                         AB( L+2, J2-L ), INCA, RWORK( J2-M ),
     $                         WORK( J2-M ), KA1 )
  330          CONTINUE
*
*              apply rotations in 1st set from both sides to diagonal
*              blocks
*
               CALL CLAR2V( NR, AB( 1, J2 ), AB( 1, J2+1 ), AB( 2, J2 ),
     $                      INCA, RWORK( J2-M ), WORK( J2-M ), KA1 )
*
               CALL CLACGV( NR, WORK( J2-M ), KA1 )
            END IF
*
*           start applying rotations in 1st set from the right
*
            DO 340 L = KA - 1, KB - K + 1, -1
               NRT = ( N-J2+L ) / KA1
               IF( NRT.GT.0 )
     $            CALL CLARTV( NRT, AB( KA1-L+1, J2 ), INCA,
     $                         AB( KA1-L, J2+1 ), INCA, RWORK( J2-M ),
     $                         WORK( J2-M ), KA1 )
  340       CONTINUE
*
            IF( WANTX ) THEN
*
*              post-multiply X by product of rotations in 1st set
*
               DO 350 J = J2, J1, KA1
                  CALL CROT( N-M, X( M+1, J ), 1, X( M+1, J+1 ), 1,
     $                       RWORK( J-M ), WORK( J-M ) )
  350          CONTINUE
            END IF
  360    CONTINUE
*
         IF( UPDATE ) THEN
            IF( I2.LE.N .AND. KBT.GT.0 ) THEN
*
*              create nonzero element a(i-kbt+ka+1,i-kbt) outside the
*              band and store it in WORK(i-kbt)
*
               WORK( I-KBT ) = -BB( KBT+1, I-KBT )*RA1
            END IF
         END IF
*
         DO 400 K = KB, 1, -1
            IF( UPDATE ) THEN
               J2 = I - K - 1 + MAX( 2, K-I0+1 )*KA1
            ELSE
               J2 = I - K - 1 + MAX( 1, K-I0+1 )*KA1
            END IF
*
*           finish applying rotations in 2nd set from the right
*
            DO 370 L = KB - K, 1, -1
               NRT = ( N-J2+KA+L ) / KA1
               IF( NRT.GT.0 )
     $            CALL CLARTV( NRT, AB( KA1-L+1, J2-KA ), INCA,
     $                         AB( KA1-L, J2-KA+1 ), INCA,
     $                         RWORK( J2-KA ), WORK( J2-KA ), KA1 )
  370       CONTINUE
            NR = ( N-J2+KA ) / KA1
            J1 = J2 + ( NR-1 )*KA1
            DO 380 J = J1, J2, -KA1
               WORK( J ) = WORK( J-KA )
               RWORK( J ) = RWORK( J-KA )
  380       CONTINUE
            DO 390 J = J2, J1, KA1
*
*              create nonzero element a(j+1,j-ka) outside the band
*              and store it in WORK(j)
*
               WORK( J ) = WORK( J )*AB( KA1, J-KA+1 )
               AB( KA1, J-KA+1 ) = RWORK( J )*AB( KA1, J-KA+1 )
  390       CONTINUE
            IF( UPDATE ) THEN
               IF( I-K.LT.N-KA .AND. K.LE.KBT )
     $            WORK( I-K+KA ) = WORK( I-K )
            END IF
  400    CONTINUE
*
         DO 440 K = KB, 1, -1
            J2 = I - K - 1 + MAX( 1, K-I0+1 )*KA1
            NR = ( N-J2+KA ) / KA1
            J1 = J2 + ( NR-1 )*KA1
            IF( NR.GT.0 ) THEN
*
*              generate rotations in 2nd set to annihilate elements
*              which have been created outside the band
*
               CALL CLARGV( NR, AB( KA1, J2-KA ), INCA, WORK( J2 ), KA1,
     $                      RWORK( J2 ), KA1 )
*
*              apply rotations in 2nd set from the left
*
               DO 410 L = 1, KA - 1
                  CALL CLARTV( NR, AB( L+1, J2-L ), INCA,
     $                         AB( L+2, J2-L ), INCA, RWORK( J2 ),
     $                         WORK( J2 ), KA1 )
  410          CONTINUE
*
*              apply rotations in 2nd set from both sides to diagonal
*              blocks
*
               CALL CLAR2V( NR, AB( 1, J2 ), AB( 1, J2+1 ), AB( 2, J2 ),
     $                      INCA, RWORK( J2 ), WORK( J2 ), KA1 )
*
               CALL CLACGV( NR, WORK( J2 ), KA1 )
            END IF
*
*           start applying rotations in 2nd set from the right
*
            DO 420 L = KA - 1, KB - K + 1, -1
               NRT = ( N-J2+L ) / KA1
               IF( NRT.GT.0 )
     $            CALL CLARTV( NRT, AB( KA1-L+1, J2 ), INCA,
     $                         AB( KA1-L, J2+1 ), INCA, RWORK( J2 ),
     $                         WORK( J2 ), KA1 )
  420       CONTINUE
*
            IF( WANTX ) THEN
*
*              post-multiply X by product of rotations in 2nd set
*
               DO 430 J = J2, J1, KA1
                  CALL CROT( N-M, X( M+1, J ), 1, X( M+1, J+1 ), 1,
     $                       RWORK( J ), WORK( J ) )
  430          CONTINUE
            END IF
  440    CONTINUE
*
         DO 460 K = 1, KB - 1
            J2 = I - K - 1 + MAX( 1, K-I0+2 )*KA1
*
*           finish applying rotations in 1st set from the right
*
            DO 450 L = KB - K, 1, -1
               NRT = ( N-J2+L ) / KA1
               IF( NRT.GT.0 )
     $            CALL CLARTV( NRT, AB( KA1-L+1, J2 ), INCA,
     $                         AB( KA1-L, J2+1 ), INCA, RWORK( J2-M ),
     $                         WORK( J2-M ), KA1 )
  450       CONTINUE
  460    CONTINUE
*
         IF( KB.GT.1 ) THEN
            DO 470 J = N - 1, J2 + KA, -1
               RWORK( J-M ) = RWORK( J-KA-M )
               WORK( J-M ) = WORK( J-KA-M )
  470       CONTINUE
         END IF
*
      END IF
*
      GO TO 10
*
  480 CONTINUE
*
*     **************************** Phase 2 *****************************
*
*     The logical structure of this phase is:
*
*     UPDATE = .TRUE.
*     DO I = 1, M
*        use S(i) to update A and create a new bulge
*        apply rotations to push all bulges KA positions upward
*     END DO
*     UPDATE = .FALSE.
*     DO I = M - KA - 1, 2, -1
*        apply rotations to push all bulges KA positions upward
*     END DO
*
*     To avoid duplicating code, the two loops are merged.
*
      UPDATE = .TRUE.
      I = 0
  490 CONTINUE
      IF( UPDATE ) THEN
         I = I + 1
         KBT = MIN( KB, M-I )
         I0 = I + 1
         I1 = MAX( 1, I-KA )
         I2 = I + KBT - KA1
         IF( I.GT.M ) THEN
            UPDATE = .FALSE.
            I = I - 1
            I0 = M + 1
            IF( KA.EQ.0 )
     $         RETURN
            GO TO 490
         END IF
      ELSE
         I = I - KA
         IF( I.LT.2 )
     $      RETURN
      END IF
*
      IF( I.LT.M-KBT ) THEN
         NX = M
      ELSE
         NX = N
      END IF
*
      IF( UPPER ) THEN
*
*        Transform A, working with the upper triangle
*
         IF( UPDATE ) THEN
*
*           Form  inv(S(i))**H * A * inv(S(i))
*
            BII = REAL( BB( KB1, I ) )
            AB( KA1, I ) = ( REAL( AB( KA1, I ) ) / BII ) / BII
            DO 500 J = I1, I - 1
               AB( J-I+KA1, I ) = AB( J-I+KA1, I ) / BII
  500       CONTINUE
            DO 510 J = I + 1, MIN( N, I+KA )
               AB( I-J+KA1, J ) = AB( I-J+KA1, J ) / BII
  510       CONTINUE
            DO 540 K = I + 1, I + KBT
               DO 520 J = K, I + KBT
                  AB( K-J+KA1, J ) = AB( K-J+KA1, J ) -
     $                               BB( I-J+KB1, J )*
     $                               CONJG( AB( I-K+KA1, K ) ) -
     $                               CONJG( BB( I-K+KB1, K ) )*
     $                               AB( I-J+KA1, J ) +
     $                               REAL( AB( KA1, I ) )*
     $                               BB( I-J+KB1, J )*
     $                               CONJG( BB( I-K+KB1, K ) )
  520          CONTINUE
               DO 530 J = I + KBT + 1, MIN( N, I+KA )
                  AB( K-J+KA1, J ) = AB( K-J+KA1, J ) -
     $                               CONJG( BB( I-K+KB1, K ) )*
     $                               AB( I-J+KA1, J )
  530          CONTINUE
  540       CONTINUE
            DO 560 J = I1, I
               DO 550 K = I + 1, MIN( J+KA, I+KBT )
                  AB( J-K+KA1, K ) = AB( J-K+KA1, K ) -
     $                               BB( I-K+KB1, K )*AB( J-I+KA1, I )
  550          CONTINUE
  560       CONTINUE
*
            IF( WANTX ) THEN
*
*              post-multiply X by inv(S(i))
*
               CALL CSSCAL( NX, ONE / BII, X( 1, I ), 1 )
               IF( KBT.GT.0 )
     $            CALL CGERU( NX, KBT, -CONE, X( 1, I ), 1,
     $                        BB( KB, I+1 ), LDBB-1, X( 1, I+1 ), LDX )
            END IF
*
*           store a(i1,i) in RA1 for use in next loop over K
*
            RA1 = AB( I1-I+KA1, I )
         END IF
*
*        Generate and apply vectors of rotations to chase all the
*        existing bulges KA positions up toward the top of the band
*
         DO 610 K = 1, KB - 1
            IF( UPDATE ) THEN
*
*              Determine the rotations which would annihilate the bulge
*              which has in theory just been created
*
               IF( I+K-KA1.GT.0 .AND. I+K.LT.M ) THEN
*
*                 generate rotation to annihilate a(i+k-ka-1,i)
*
                  CALL CLARTG( AB( K+1, I ), RA1, RWORK( I+K-KA ),
     $                         WORK( I+K-KA ), RA )
*
*                 create nonzero element a(i+k-ka-1,i+k) outside the
*                 band and store it in WORK(m-kb+i+k)
*
                  T = -BB( KB1-K, I+K )*RA1
                  WORK( M-KB+I+K ) = RWORK( I+K-KA )*T -
     $                               CONJG( WORK( I+K-KA ) )*
     $                               AB( 1, I+K )
                  AB( 1, I+K ) = WORK( I+K-KA )*T +
     $                           RWORK( I+K-KA )*AB( 1, I+K )
                  RA1 = RA
               END IF
            END IF
            J2 = I + K + 1 - MAX( 1, K+I0-M+1 )*KA1
            NR = ( J2+KA-1 ) / KA1
            J1 = J2 - ( NR-1 )*KA1
            IF( UPDATE ) THEN
               J2T = MIN( J2, I-2*KA+K-1 )
            ELSE
               J2T = J2
            END IF
            NRT = ( J2T+KA-1 ) / KA1
            DO 570 J = J1, J2T, KA1
*
*              create nonzero element a(j-1,j+ka) outside the band
*              and store it in WORK(j)
*
               WORK( J ) = WORK( J )*AB( 1, J+KA-1 )
               AB( 1, J+KA-1 ) = RWORK( J )*AB( 1, J+KA-1 )
  570       CONTINUE
*
*           generate rotations in 1st set to annihilate elements which
*           have been created outside the band
*
            IF( NRT.GT.0 )
     $         CALL CLARGV( NRT, AB( 1, J1+KA ), INCA, WORK( J1 ), KA1,
     $                      RWORK( J1 ), KA1 )
            IF( NR.GT.0 ) THEN
*
*              apply rotations in 1st set from the left
*
               DO 580 L = 1, KA - 1
                  CALL CLARTV( NR, AB( KA1-L, J1+L ), INCA,
     $                         AB( KA-L, J1+L ), INCA, RWORK( J1 ),
     $                         WORK( J1 ), KA1 )
  580          CONTINUE
*
*              apply rotations in 1st set from both sides to diagonal
*              blocks
*
               CALL CLAR2V( NR, AB( KA1, J1 ), AB( KA1, J1-1 ),
     $                      AB( KA, J1 ), INCA, RWORK( J1 ), WORK( J1 ),
     $                      KA1 )
*
               CALL CLACGV( NR, WORK( J1 ), KA1 )
            END IF
*
*           start applying rotations in 1st set from the right
*
            DO 590 L = KA - 1, KB - K + 1, -1
               NRT = ( J2+L-1 ) / KA1
               J1T = J2 - ( NRT-1 )*KA1
               IF( NRT.GT.0 )
     $            CALL CLARTV( NRT, AB( L, J1T ), INCA,
     $                         AB( L+1, J1T-1 ), INCA, RWORK( J1T ),
     $                         WORK( J1T ), KA1 )
  590       CONTINUE
*
            IF( WANTX ) THEN
*
*              post-multiply X by product of rotations in 1st set
*
               DO 600 J = J1, J2, KA1
                  CALL CROT( NX, X( 1, J ), 1, X( 1, J-1 ), 1,
     $                       RWORK( J ), WORK( J ) )
  600          CONTINUE
            END IF
  610    CONTINUE
*
         IF( UPDATE ) THEN
            IF( I2.GT.0 .AND. KBT.GT.0 ) THEN
*
*              create nonzero element a(i+kbt-ka-1,i+kbt) outside the
*              band and store it in WORK(m-kb+i+kbt)
*
               WORK( M-KB+I+KBT ) = -BB( KB1-KBT, I+KBT )*RA1
            END IF
         END IF
*
         DO 650 K = KB, 1, -1
            IF( UPDATE ) THEN
               J2 = I + K + 1 - MAX( 2, K+I0-M )*KA1
            ELSE
               J2 = I + K + 1 - MAX( 1, K+I0-M )*KA1
            END IF
*
*           finish applying rotations in 2nd set from the right
*
            DO 620 L = KB - K, 1, -1
               NRT = ( J2+KA+L-1 ) / KA1
               J1T = J2 - ( NRT-1 )*KA1
               IF( NRT.GT.0 )
     $            CALL CLARTV( NRT, AB( L, J1T+KA ), INCA,
     $                         AB( L+1, J1T+KA-1 ), INCA,
     $                         RWORK( M-KB+J1T+KA ),
     $                         WORK( M-KB+J1T+KA ), KA1 )
  620       CONTINUE
            NR = ( J2+KA-1 ) / KA1
            J1 = J2 - ( NR-1 )*KA1
            DO 630 J = J1, J2, KA1
               WORK( M-KB+J ) = WORK( M-KB+J+KA )
               RWORK( M-KB+J ) = RWORK( M-KB+J+KA )
  630       CONTINUE
            DO 640 J = J1, J2, KA1
*
*              create nonzero element a(j-1,j+ka) outside the band
*              and store it in WORK(m-kb+j)
*
               WORK( M-KB+J ) = WORK( M-KB+J )*AB( 1, J+KA-1 )
               AB( 1, J+KA-1 ) = RWORK( M-KB+J )*AB( 1, J+KA-1 )
  640       CONTINUE
            IF( UPDATE ) THEN
               IF( I+K.GT.KA1 .AND. K.LE.KBT )
     $            WORK( M-KB+I+K-KA ) = WORK( M-KB+I+K )
            END IF
  650    CONTINUE
*
         DO 690 K = KB, 1, -1
            J2 = I + K + 1 - MAX( 1, K+I0-M )*KA1
            NR = ( J2+KA-1 ) / KA1
            J1 = J2 - ( NR-1 )*KA1
            IF( NR.GT.0 ) THEN
*
*              generate rotations in 2nd set to annihilate elements
*              which have been created outside the band
*
               CALL CLARGV( NR, AB( 1, J1+KA ), INCA, WORK( M-KB+J1 ),
     $                      KA1, RWORK( M-KB+J1 ), KA1 )
*
*              apply rotations in 2nd set from the left
*
               DO 660 L = 1, KA - 1
                  CALL CLARTV( NR, AB( KA1-L, J1+L ), INCA,
     $                         AB( KA-L, J1+L ), INCA, RWORK( M-KB+J1 ),
     $                         WORK( M-KB+J1 ), KA1 )
  660          CONTINUE
*
*              apply rotations in 2nd set from both sides to diagonal
*              blocks
*
               CALL CLAR2V( NR, AB( KA1, J1 ), AB( KA1, J1-1 ),
     $                      AB( KA, J1 ), INCA, RWORK( M-KB+J1 ),
     $                      WORK( M-KB+J1 ), KA1 )
*
               CALL CLACGV( NR, WORK( M-KB+J1 ), KA1 )
            END IF
*
*           start applying rotations in 2nd set from the right
*
            DO 670 L = KA - 1, KB - K + 1, -1
               NRT = ( J2+L-1 ) / KA1
               J1T = J2 - ( NRT-1 )*KA1
               IF( NRT.GT.0 )
     $            CALL CLARTV( NRT, AB( L, J1T ), INCA,
     $                         AB( L+1, J1T-1 ), INCA,
     $                         RWORK( M-KB+J1T ), WORK( M-KB+J1T ),
     $                         KA1 )
  670       CONTINUE
*
            IF( WANTX ) THEN
*
*              post-multiply X by product of rotations in 2nd set
*
               DO 680 J = J1, J2, KA1
                  CALL CROT( NX, X( 1, J ), 1, X( 1, J-1 ), 1,
     $                       RWORK( M-KB+J ), WORK( M-KB+J ) )
  680          CONTINUE
            END IF
  690    CONTINUE
*
         DO 710 K = 1, KB - 1
            J2 = I + K + 1 - MAX( 1, K+I0-M+1 )*KA1
*
*           finish applying rotations in 1st set from the right
*
            DO 700 L = KB - K, 1, -1
               NRT = ( J2+L-1 ) / KA1
               J1T = J2 - ( NRT-1 )*KA1
               IF( NRT.GT.0 )
     $            CALL CLARTV( NRT, AB( L, J1T ), INCA,
     $                         AB( L+1, J1T-1 ), INCA, RWORK( J1T ),
     $                         WORK( J1T ), KA1 )
  700       CONTINUE
  710    CONTINUE
*
         IF( KB.GT.1 ) THEN
            DO 720 J = 2, I2 - KA
               RWORK( J ) = RWORK( J+KA )
               WORK( J ) = WORK( J+KA )
  720       CONTINUE
         END IF
*
      ELSE
*
*        Transform A, working with the lower triangle
*
         IF( UPDATE ) THEN
*
*           Form  inv(S(i))**H * A * inv(S(i))
*
            BII = REAL( BB( 1, I ) )
            AB( 1, I ) = ( REAL( AB( 1, I ) ) / BII ) / BII
            DO 730 J = I1, I - 1
               AB( I-J+1, J ) = AB( I-J+1, J ) / BII
  730       CONTINUE
            DO 740 J = I + 1, MIN( N, I+KA )
               AB( J-I+1, I ) = AB( J-I+1, I ) / BII
  740       CONTINUE
            DO 770 K = I + 1, I + KBT
               DO 750 J = K, I + KBT
                  AB( J-K+1, K ) = AB( J-K+1, K ) -
     $                             BB( J-I+1, I )*CONJG( AB( K-I+1,
     $                             I ) ) - CONJG( BB( K-I+1, I ) )*
     $                             AB( J-I+1, I ) + REAL( AB( 1, I ) )*
     $                             BB( J-I+1, I )*CONJG( BB( K-I+1,
     $                             I ) )
  750          CONTINUE
               DO 760 J = I + KBT + 1, MIN( N, I+KA )
                  AB( J-K+1, K ) = AB( J-K+1, K ) -
     $                             CONJG( BB( K-I+1, I ) )*
     $                             AB( J-I+1, I )
  760          CONTINUE
  770       CONTINUE
            DO 790 J = I1, I
               DO 780 K = I + 1, MIN( J+KA, I+KBT )
                  AB( K-J+1, J ) = AB( K-J+1, J ) -
     $                             BB( K-I+1, I )*AB( I-J+1, J )
  780          CONTINUE
  790       CONTINUE
*
            IF( WANTX ) THEN
*
*              post-multiply X by inv(S(i))
*
               CALL CSSCAL( NX, ONE / BII, X( 1, I ), 1 )
               IF( KBT.GT.0 )
     $            CALL CGERC( NX, KBT, -CONE, X( 1, I ), 1, BB( 2, I ),
     $                        1, X( 1, I+1 ), LDX )
            END IF
*
*           store a(i,i1) in RA1 for use in next loop over K
*
            RA1 = AB( I-I1+1, I1 )
         END IF
*
*        Generate and apply vectors of rotations to chase all the
*        existing bulges KA positions up toward the top of the band
*
         DO 840 K = 1, KB - 1
            IF( UPDATE ) THEN
*
*              Determine the rotations which would annihilate the bulge
*              which has in theory just been created
*
               IF( I+K-KA1.GT.0 .AND. I+K.LT.M ) THEN
*
*                 generate rotation to annihilate a(i,i+k-ka-1)
*
                  CALL CLARTG( AB( KA1-K, I+K-KA ), RA1,
     $                         RWORK( I+K-KA ), WORK( I+K-KA ), RA )
*
*                 create nonzero element a(i+k,i+k-ka-1) outside the
*                 band and store it in WORK(m-kb+i+k)
*
                  T = -BB( K+1, I )*RA1
                  WORK( M-KB+I+K ) = RWORK( I+K-KA )*T -
     $                               CONJG( WORK( I+K-KA ) )*
     $                               AB( KA1, I+K-KA )
                  AB( KA1, I+K-KA ) = WORK( I+K-KA )*T +
     $                                RWORK( I+K-KA )*AB( KA1, I+K-KA )
                  RA1 = RA
               END IF
            END IF
            J2 = I + K + 1 - MAX( 1, K+I0-M+1 )*KA1
            NR = ( J2+KA-1 ) / KA1
            J1 = J2 - ( NR-1 )*KA1
            IF( UPDATE ) THEN
               J2T = MIN( J2, I-2*KA+K-1 )
            ELSE
               J2T = J2
            END IF
            NRT = ( J2T+KA-1 ) / KA1
            DO 800 J = J1, J2T, KA1
*
*              create nonzero element a(j+ka,j-1) outside the band
*              and store it in WORK(j)
*
               WORK( J ) = WORK( J )*AB( KA1, J-1 )
               AB( KA1, J-1 ) = RWORK( J )*AB( KA1, J-1 )
  800       CONTINUE
*
*           generate rotations in 1st set to annihilate elements which
*           have been created outside the band
*
            IF( NRT.GT.0 )
     $         CALL CLARGV( NRT, AB( KA1, J1 ), INCA, WORK( J1 ), KA1,
     $                      RWORK( J1 ), KA1 )
            IF( NR.GT.0 ) THEN
*
*              apply rotations in 1st set from the right
*
               DO 810 L = 1, KA - 1
                  CALL CLARTV( NR, AB( L+1, J1 ), INCA, AB( L+2, J1-1 ),
     $                         INCA, RWORK( J1 ), WORK( J1 ), KA1 )
  810          CONTINUE
*
*              apply rotations in 1st set from both sides to diagonal
*              blocks
*
               CALL CLAR2V( NR, AB( 1, J1 ), AB( 1, J1-1 ),
     $                      AB( 2, J1-1 ), INCA, RWORK( J1 ),
     $                      WORK( J1 ), KA1 )
*
               CALL CLACGV( NR, WORK( J1 ), KA1 )
            END IF
*
*           start applying rotations in 1st set from the left
*
            DO 820 L = KA - 1, KB - K + 1, -1
               NRT = ( J2+L-1 ) / KA1
               J1T = J2 - ( NRT-1 )*KA1
               IF( NRT.GT.0 )
     $            CALL CLARTV( NRT, AB( KA1-L+1, J1T-KA1+L ), INCA,
     $                         AB( KA1-L, J1T-KA1+L ), INCA,
     $                         RWORK( J1T ), WORK( J1T ), KA1 )
  820       CONTINUE
*
            IF( WANTX ) THEN
*
*              post-multiply X by product of rotations in 1st set
*
               DO 830 J = J1, J2, KA1
                  CALL CROT( NX, X( 1, J ), 1, X( 1, J-1 ), 1,
     $                       RWORK( J ), CONJG( WORK( J ) ) )
  830          CONTINUE
            END IF
  840    CONTINUE
*
         IF( UPDATE ) THEN
            IF( I2.GT.0 .AND. KBT.GT.0 ) THEN
*
*              create nonzero element a(i+kbt,i+kbt-ka-1) outside the
*              band and store it in WORK(m-kb+i+kbt)
*
               WORK( M-KB+I+KBT ) = -BB( KBT+1, I )*RA1
            END IF
         END IF
*
         DO 880 K = KB, 1, -1
            IF( UPDATE ) THEN
               J2 = I + K + 1 - MAX( 2, K+I0-M )*KA1
            ELSE
               J2 = I + K + 1 - MAX( 1, K+I0-M )*KA1
            END IF
*
*           finish applying rotations in 2nd set from the left
*
            DO 850 L = KB - K, 1, -1
               NRT = ( J2+KA+L-1 ) / KA1
               J1T = J2 - ( NRT-1 )*KA1
               IF( NRT.GT.0 )
     $            CALL CLARTV( NRT, AB( KA1-L+1, J1T+L-1 ), INCA,
     $                         AB( KA1-L, J1T+L-1 ), INCA,
     $                         RWORK( M-KB+J1T+KA ),
     $                         WORK( M-KB+J1T+KA ), KA1 )
  850       CONTINUE
            NR = ( J2+KA-1 ) / KA1
            J1 = J2 - ( NR-1 )*KA1
            DO 860 J = J1, J2, KA1
               WORK( M-KB+J ) = WORK( M-KB+J+KA )
               RWORK( M-KB+J ) = RWORK( M-KB+J+KA )
  860       CONTINUE
            DO 870 J = J1, J2, KA1
*
*              create nonzero element a(j+ka,j-1) outside the band
*              and store it in WORK(m-kb+j)
*
               WORK( M-KB+J ) = WORK( M-KB+J )*AB( KA1, J-1 )
               AB( KA1, J-1 ) = RWORK( M-KB+J )*AB( KA1, J-1 )
  870       CONTINUE
            IF( UPDATE ) THEN
               IF( I+K.GT.KA1 .AND. K.LE.KBT )
     $            WORK( M-KB+I+K-KA ) = WORK( M-KB+I+K )
            END IF
  880    CONTINUE
*
         DO 920 K = KB, 1, -1
            J2 = I + K + 1 - MAX( 1, K+I0-M )*KA1
            NR = ( J2+KA-1 ) / KA1
            J1 = J2 - ( NR-1 )*KA1
            IF( NR.GT.0 ) THEN
*
*              generate rotations in 2nd set to annihilate elements
*              which have been created outside the band
*
               CALL CLARGV( NR, AB( KA1, J1 ), INCA, WORK( M-KB+J1 ),
     $                      KA1, RWORK( M-KB+J1 ), KA1 )
*
*              apply rotations in 2nd set from the right
*
               DO 890 L = 1, KA - 1
                  CALL CLARTV( NR, AB( L+1, J1 ), INCA, AB( L+2, J1-1 ),
     $                         INCA, RWORK( M-KB+J1 ), WORK( M-KB+J1 ),
     $                         KA1 )
  890          CONTINUE
*
*              apply rotations in 2nd set from both sides to diagonal
*              blocks
*
               CALL CLAR2V( NR, AB( 1, J1 ), AB( 1, J1-1 ),
     $                      AB( 2, J1-1 ), INCA, RWORK( M-KB+J1 ),
     $                      WORK( M-KB+J1 ), KA1 )
*
               CALL CLACGV( NR, WORK( M-KB+J1 ), KA1 )
            END IF
*
*           start applying rotations in 2nd set from the left
*
            DO 900 L = KA - 1, KB - K + 1, -1
               NRT = ( J2+L-1 ) / KA1
               J1T = J2 - ( NRT-1 )*KA1
               IF( NRT.GT.0 )
     $            CALL CLARTV( NRT, AB( KA1-L+1, J1T-KA1+L ), INCA,
     $                         AB( KA1-L, J1T-KA1+L ), INCA,
     $                         RWORK( M-KB+J1T ), WORK( M-KB+J1T ),
     $                         KA1 )
  900       CONTINUE
*
            IF( WANTX ) THEN
*
*              post-multiply X by product of rotations in 2nd set
*
               DO 910 J = J1, J2, KA1
                  CALL CROT( NX, X( 1, J ), 1, X( 1, J-1 ), 1,
     $                       RWORK( M-KB+J ), CONJG( WORK( M-KB+J ) ) )
  910          CONTINUE
            END IF
  920    CONTINUE
*
         DO 940 K = 1, KB - 1
            J2 = I + K + 1 - MAX( 1, K+I0-M+1 )*KA1
*
*           finish applying rotations in 1st set from the left
*
            DO 930 L = KB - K, 1, -1
               NRT = ( J2+L-1 ) / KA1
               J1T = J2 - ( NRT-1 )*KA1
               IF( NRT.GT.0 )
     $            CALL CLARTV( NRT, AB( KA1-L+1, J1T-KA1+L ), INCA,
     $                         AB( KA1-L, J1T-KA1+L ), INCA,
     $                         RWORK( J1T ), WORK( J1T ), KA1 )
  930       CONTINUE
  940    CONTINUE
*
         IF( KB.GT.1 ) THEN
            DO 950 J = 2, I2 - KA
               RWORK( J ) = RWORK( J+KA )
               WORK( J ) = WORK( J+KA )
  950       CONTINUE
         END IF
*
      END IF
*
      GO TO 490
*
*     End of CHBGST
*
      END